
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Design patterns for user interface for mobile applications

Erik G. Nilsson *

SINTEF ICT, Postboks 124, Blindern, N-0314 Oslo, Norway

a r t i c l e i n f o

Article history:
Received 22 September 2008
Received in revised form 19 November 2008
Accepted 19 January 2009
Available online 25 April 2009

Keywords:
User interface design patterns
User interfaces for mobile applications
Patterns collection
Mobility
Design guidelines

a b s t r a c t

The topic of this paper is a collection of user interface (UI) design patterns for mobile applications. In the
paper we present the structure of the patterns collection – the patterns are suggested solutions to prob-
lems that are grouped into a set of problem areas that are further grouped into three main problem areas
– a structure which is valuable both as an index to identifying patterns to use, and it gives a fairly com-
prehensive overview of issues when designing user interfaces for mobile applications. To show the
breadth of the patterns collection we present six individual problems with connected design patterns
in some detail – each coming from different problem areas. They represent important and relevant prob-
lems, and are on different levels of abstraction, thus showing how patterns may be used to present prob-
lems and solutions on different levels of detail. To show the relevance and usefulness of the patterns
collection for usability professionals with a mixed background, we present some relevant findings from
a validation of the patterns collection. In addition to verifying the relevance and usefulness of the pat-
terns collection, it also shows both expected and surprising correlations between background and per-
ceived relevance and usefulness. One important finding from the validation is an indication that the
patterns collection is best suited for experienced UI developers wanting to start developing mobile UIs.
Using a patterns collection for documenting design knowledge and experience has been a mixed experi-
ence, so we discuss pros and cons of this. Finally, we present related work and future research.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the UMBRA and FLAMINCO projects, we have developed a set
of design guidelines to aid developing more user-friendly applica-
tions on mobile devices (PDAs/SmartPhones), giving practical ad-
vices for how to solve various problems that arise when
designing user interfaces on mobile devices. The main part of these
design guidelines is a collection of user interface design patterns
for mobile applications [8] (the patterns collection is available at
http://www.flaminco.net).

The patterns collection suggests solutions to a number of prob-
lems that may occur when designing such solutions. These prob-
lems are grouped in three main problem areas

1. Utilizing screen space.
2. Interaction mechanisms.
3. Design at large.

Each problem is presented using a design pattern approach
[6,1,18] where the problem itself, general guidelines for solving
the problem and a number of relevant design patterns are
discussed. In the presentation of possible solutions and design

patterns, pros and cons of different solutions are discussed, and
examples of good solutions are given where appropriate. The
‘‘sources” for the contents of the patterns collection are problems
identified in the requirements elicitation phase of the UMBRA
and FLAMINCO projects. The problems stem from the pilot projects
conducted by the project partners, from general experience gath-
ered by the project participants when developing mobile applica-
tions, from literature surveys [17,13,14], and from experiences
with using different applications on mobile devices. The problems
presented in the patterns collection tries to span both the most
common problems when designing mobile UIs today, and future
challenges like multimodal (including use of gestures) as well as
contextual and adaptive UIs. Despite this, the main focus of the
patterns collection is professional application in general and
forms-based UIs in particular. The patterns collection is constantly
being refined and further developed, especially into future chal-
lenges and new types of UIs.

2. Main problem areas

The design patterns presented in this document follow a given
structure. On the top level, they are grouped into the three main
problem areas mentioned in the introduction. Within each of these
three main problem areas, a small number of problem areas are de-
fined. In Table 1, a brief description of the main problem areas and

0965-9978/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2009.01.017

* Tel.: +47 22 06 73 00; fax: +47 22 06 73 50.
E-mail address: egn@sintef.no

Advances in Engineering Software 40 (2009) 1318–1328

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft



Author's personal copy

problem areas are given, as well as the identified problems within
each of these problem areas. The problems presented in bold font
are presented in the next section.

3. Selected problems with connected design patterns

In this section we present brief versions of a selection of the de-
sign patterns for six of the identified problems. The selection is
partly based on their importance, partly to show examples of the
different parts of the patterns collection, and partly to show prob-
lems and patterns on different levels of abstraction. For most of the
problem presented below, we also provide some general guidelines
in addition to the selected design patterns.

3.1. Horizontal scrolling

Horizontal scrolling is usually worse than vertical scrolling. One
of the reasons for this is that information on the same line usually
is closer connected than information on different lines. This means
that the user looses more context information when scrolling hor-
izontally than vertically.

Using a selection and projection analogy, avoiding or handling
horizontal scrolling (especially for lists) is often a question of pro-
jection, i.e. which attributes that are to be shown and in which se-
quence. If the projection is wrong (compared to the user’s need),
horizontal scrolling is often needed.

3.1.1. General guidelines
One solution is to optimizing the sequence and size of the attri-

butes shown.
Looking specially at avoiding horizontal scrolling, changing the

layout may solve this without using any of the packing solutions.
This will usually increase the need for vertical scrolling.

Changing the screen orientation (see the design pattern below)
may be considered being a fairly simple way of changing the layout
of a UI, which in many cases will not cause any layout changes at
all. In other cases it may cause a need for moving or regrouping
some fields. This is an example of what we call a simple redesign
– usually restricted to changing the layout of a given set of fields.
This is an inexpensive solution to the problem of horizontal scroll-
ing, but may not be sufficient in some cases, either because the UI
becomes too cluttered or requires very much vertical scrolling to
avoid the horizontal one.

A slightly more radical solution is to perform a minor redesign of
the UI. By this we mean to do more than just a layout change, but
keeping the style (usually forms-based). In the case of a forms-
based UI this typically implies changing the controls that are used
in the UI to more space conservative ones, or to use controls that
may replace a number of other controls. A medium redesign may
also imply redesigning which information that is to be presented
in which window (often resulting in a larger number of windows).
This is also a fairly inexpensive solution (depending on the degree
of changes), which may work in more cases than just a simple
redesign.

Table 1
Main problem areas and problem areas structuring the patterns collection with their connected problems.

Main problem
area

Problem area Description and individual problems (with connected UI design patterns)

Utilizing screen
space

Focus on problems connected to the limitations regarding screen space on mobile equipment
Screen space in
general

Addresses problems connected to different layout challenges on small screens
� Presenting elements in lists
� Principles for grouping information
� Mechanisms for grouping information
� Mechanisms for packing information
� Horizontal scrolling

Flexible user
interfaces

Addresses problems connected changing the layout dynamically at runtime because the either the information that should be
presented and/or the environment in which to present the information change
� Presentation based on models or data – how to do this on a small screen
� Handling crowded dialogs when software keyboard is shown and hidden
� Versions and variants – dynamic and configurable user interfaces on small screens
� User interfaces that facilitate switching between portrait and landscape mode
� User interfaces that are able to run on equipment with different screen size

Interaction
mechanisms

Focus on problems connected to the limitations regarding interaction mechanism on mobile equipment
Handling input Addresses problems connected to entering information more efficient and/or with less probability for entering incorrect

information
� Mechanisms for entering text
� Order entry
� Mechanisms for entering numerical data
� Multimodal input
� Controlling input cursor from an application

Not using the
stylus

Addresses problems connected to entering information in situation when it is not possible/convenient/desired for the user to use a
stylus
� Interacting with applications without using stylus
� Retrieving data from a database without using keyboard

Design at large Focus on problems connected to design principles for user interfaces on mobile equipment
Guidelines Addresses design guidelines on different levels of generality

� Design guidelines for data base applications, including automatically generated user interfaces
� Standard features that should be available in an automatically generated prototype
� Design that supports branding, is aesthetic, and utilize screen space optimally
� Solutions for searching large amounts of data
� Visually coding of entry fields to mark editability (must, may, may not)
� Standard solutions vs. usable tailored solutions

‘‘Difficult to
understand”

Addresses problems connected to providing understanding of what is happening when a mobile application performs functionality
that can be difficult to understand for the end user – usually functionality that is specific for mobile applications
� User interaction during synchronization
� User interaction for log-on/log-off
� User interaction during waiting for long-lasting operations to complete

E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328 1319



Author's personal copy

The most radical solution is to perform a major redesign of the
UI. By this we mean to change the style of the UI, e.g. from a
forms-based UI to one using a more visual metaphor. This is usu-
ally more difficult and may be much more expensive than a simple
or medium redesign, but may also result in a much more user-
friendly solution. Such changes may not only reduce the need for
horizontal scrolling in a single window, it may reduce the total
number of windows in the application.

3.1.2. Design pattern: Change the screen orientation
3.1.2.1. Use when. If this is an option on the platform, it will by de-
fault reduce the need for horizontal (and increase the need for ver-
tical) scrolling, as illustrated in Fig. 1. An important choice if this
solution is used is whether the user should be given the opportu-
nity to switch between landscape and portrait, or if only landscape
should be available. The first choice imposes a number of new
problems. The latter choice is easier to realize, but offers less flex-
ibility for the user, and may reduce which devices/versions of the
operating system that may be used to run the application.

3.1.2.2. How. Provide a version of the UI in landscape format, alone
or in addition to a version in portrait format.

3.1.2.3. Why. Horizontal scrolling should be avoided in all UIs, but
is probably worse on mobile devices than on larger displays, partly
because the amount of context information is larger when the
screen is larger. Also, on a larger screen, it is usually possible to
make the window larger to decrease the need for horizontal scroll-
ing. And even worse, because the screen is smaller, the need for
horizontal scrolling occurs more often.

3.2. Handling crowded dialogs when software keyboard is shown and
hidden

On PDAs without keyboard, a common solution for entering text
is to show a software keyboard on the bottom of the screen where
the user can enter text using the stylus. The area in which the key-
board is shown may already be used by the application. This means
that the application have less room for its ‘‘normal” interaction.

The main problem when designing a user interface that should
be able to handle that the software keyboard comes and goes is
how to resize the dialogs. Resizing may just imply adding/adjust-
ing a scroll bar, but often some other adjustments are needed to
avoid some parts of the dialogs becoming invisible.

The severity of this problem is depending on the type/style of
the user interface. If the UI only contains an arbitrary text, adding
or adjusting the scrollbar is a sufficient solution. A forms-based UI
may be much more difficult to resize. The same may be the case for
a more visual presentation, depending on whether the visualiza-

tion is tailored for the screen size or not. Handling tab folders
and buttons that are placed on the bottom of the screen is also a
challenge.

The design patterns presented in this problem focus on forms-
based UIs, because it is mainly for this type of UIs that this problem
occurs.

3.2.1. General guidelines
A buffer solution (see design patterns below) may also be used

with two or more large UI controls sharing the amount of size
reduction to be applied. Generalized, this solution ends up as dy-
namic resizing of the controls in the UI. This may be done using
two different approaches. The first is to decide a resizing rule for
each window and apply that as tailored code for each window.
The second is to have a general layout adjustment algorithm doing
it for all windows.

3.2.2. Design pattern: Add or adjust scroll bars
An obvious and simple solution to this problem is to add or ad-

just scroll bars when the keyboard appears, as illustrated in Fig. 2.
The other solutions presented below are solutions where the need
for adding scroll bars are removed or reduced.

3.2.2.1. Use when. This solutions should be used when a simple and
inexpensive solution is sought, or when none of the other patterns
are useful.

3.2.2.2. How. Provide two sizes of the view for the dialog.

3.2.2.3. Why. The solution is simple and inexpensive, yet easy to
understand.

3.2.3. Design pattern: Let the keyboard cover part of the UI
How ‘‘bad” this solution depends on what is placed on the part

of the screen that will be covered by the keyboard, as illustrated in
Fig. 3.

3.2.3.1. Use when. If this part is occupied by output fields, the solu-
tion may work fine as long as the keyboard is removed when not
needed. If this part of the screen contains important input fields
or tab folders the solution is useless.

3.2.3.2. How. This solution is in essence ‘‘doing nothing”.

3.2.3.3. Why. The solution is simple and inexpensive, though not al-
ways very user friendly.

Fig. 1. Changing screen orientation to reduce horizontal scrolling. Fig. 2. Adding scroll bar when keyboard is shown.

1320 E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328



Author's personal copy

3.2.4. Design pattern: Only use the part of the screen that will not be
covered by the keyboard

In practice, what this solution does is to reduce the size of the
part of the screen that may be exploited.

3.2.4.1. Use when. This solution may be OK for dialog boxes as illus-
trated in Fig. 4, but is seldom practical for normal windows.

3.2.4.2. How. Restrict the amount of information in the dialog.

3.2.4.3. Why. The solution is simple and inexpensive.

3.2.5. Design pattern: Use one large UI control as a buffer
By this we mean that when the keyboard is added, one of the

controls is reduced vertically to be just as much smaller as the size
of the keyboard, as illustrated with the list box control in Fig. 5.

3.2.5.1. Use when. The solution is relevant when the UI contains
one or more controls that may be used as a buffer.

3.2.5.2. How. General controls that may be used for this are primar-
ily list boxes and multi line text boxes.

3.2.5.3. Why. The solution is simple and inexpensive, yet it usually
does not confuse the user.

3.2.6. Design pattern: Keyboard as part of layout
Instead of using a built-in software keyboard that the applica-

tion have to adjust to, it is also possible to have an application spe-
cific keyboard that is designed to be part of the layout, as
illustrated in Fig. 6.

3.2.6.1. Use when. The solution is most appropriate in mass market
products where the extra costs for designing application specific
keyboards will pay off, or when such solutions are supported by
the OS (like on the iPhone platform).

3.2.6.2. How. An application specific keyboard must be developed.

3.2.6.3. Why. The solution may provide both very efficient, and user
– as well as finger–friendly UIs.

3.3. Mechanisms for entering text

The main mechanisms for entering text on PDAs are SW key-
boards, small physical keyboard and stokes-based input. Common
for all built-in physical keyboards is that they are so small that the
user must enter text with one or two finger. Common for most SW
keyboards and all strokes-based input is that it is difficult to oper-
ate them without using the stylus.

When designing a PDA application where the user must enter
some text, there are two related problems to solve: how to avoid
that the user must enter text and how to make it easier for the user
to enter text. The main goal is often to avoid having to use the gen-
eric text entering mechanisms.

3.3.1. General guidelines
A different type of solution than the design patterns presented

below is to collect data from some other source than user interac-
tion, usually by exploiting contextual data [7,12]. This principle is
based on an assumption that the context in which a mobile user
operates changes more rapidly than it does for a stationary user
and that this knowledge may be used to make the application more
user friendly, i.e. obtaining data that the user would have had to
enter if the application did not have this ability. An example of this
is using an RF-ID sensor to identify a piece of equipment that is to
be inspected so that the user is relieved from entering a long and
cryptic equipment id. A related alternative to exploiting contextual
data is to use multimodal input [16].

Fig. 3. Keyboard covers part of UI.

Fig. 4. Dialog box which leaves room for keyboard.

Fig. 5. List box control that shrinks when keyboard is added.

Fig. 6. Keyboard as part of layout of an application.

E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328 1321



Author's personal copy

3.3.2. Design pattern: Auto complete
This is a mechanism that tries to guess what the user is about to

write and suggests this by filling in the suggested text ahead of the
writing of the user, as illustrated in Fig. 7.

3.3.2.1. Use when. The solution is relevant when there are some
patterns in what the user writes that are repeated over time.

3.3.2.2. How. On the Windows Mobile platform an adaptive auto
complete mechanism is included in all the generic input mecha-
nisms. Specialized applications specific auto complete mechanisms
in certain field are usually more efficient. This is common when
writing an URL in most web browsers and when writing names
in an email client. Common for such solutions is that they use
the history of values used earlier to suggest the new ones.

3.3.2.3. Why. The solution reduces the amount of repetitive typing.

3.3.3. Design pattern: Predefined values
By this we mean having a list of all (or the most common) texts

to enter in a field.

3.3.3.1. Use when. The solution is relevant when there is a small set
of words or phrases that are used more often than others.

3.3.3.2. How. The list of values may be accessed from a menu or
from a combo box, as illustrated in Fig. 8. The values in the list
may also be dynamic based on user behaviour.

3.3.3.3. Why. The solution reduces the need for typing commonly
used words and phrases.

3.3.4. Design pattern: Alternative input mechanisms
By this we mean using UI controls that are operated directly on

the screen as an alternative to keyboard, as illustrated in Fig. 9.

3.3.4.1. Use when. Most of the relevant mechanisms require that
there is some sort of restrictions on the domain of the attributes
that should be entered through the mechanism.

3.3.4.2. How. In addition to radio buttons, combo and check boxes,
spinners, sliders, and menus are the most common controls for
this.

3.3.4.3. Why. Direct manipulation is usually more efficient and eas-
ier to perform than typing.

3.3.5. Design pattern: Specialized input mechanisms
By this we mean using (a combination of) existing controls in a

new way to implement a creative solution.

3.3.5.1. Use when. The solution is appropriate in most situations,
specially when other patterns are not relevant.

3.3.5.2. How. An example of this approach is the mechanism used
in an application for service technicians, where the user may write
common fault description in a natural language like syntax by
choosing from a set of drop down list with commonly used nouns,
verbs and preposition expressions.

3.3.5.3. Why. Having a restricted number of values in each drop-
down list still facilitates entering a very large number of possible
sentences in a simple way.

3.4. Interacting with applications without using stylus

This problem is only applicable for devices that are designed to
be used both with and without a stylus (not for devices that only
can be controlled using HW keys).

For some users it is not practical to use the stylus. This could
be because the user wears gloves, because it too cold to fumble
with the stylus, because the user has only one hand available, be-
cause the user has lost the stylus, or because the user prefers not
using it.

The most obvious problem that occurs when using the finger in-
stead of a stylus to control a PDA is that the precision when point-
ing is coarser. Combined with the fact that a finger conceals larger
parts of a UI than a stylus does, makes it even more difficult to hit
small details using a finger than with a stylus. This problem gets

Fig. 7. Auto-complete in a notes application.

Fig. 8. Using predefined answer alternatives in a messaging application.

Fig. 9. Using clock and spinners for adjusting the time.

1322 E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328



Author's personal copy

even worse if the user uses gloves of some kind. The most obvious
solution, i.e. making the controls bigger easily increase screen
space problems.

3.4.1. General guidelines
Controlling the PDA using a finger instead of a stylus is partly a

question of choosing, partly a question of adapting and partly a
question of making UI components (controls). These three levels
of solving the problem are proportional regarding cost vs. potential
benefits.

Just choosing most appropriate UI components as well as simple
adaptation of UI components has no additional costs connected to
the components, but may not facilitate an ‘‘optimal” solution. By
simple adaptation of UI components we mean adjusting the com-
ponents’ properties to make them more fit for finger use. Exactly
which components that work best for finger control vary between
the different PDA platforms. For the Windows Mobile platform Ta-
ble 2 gives some characteristics of most of the standard compo-
nents with respect to ‘‘finger friendliness”.

By advanced adaptation of UI components we mean adaptations
that require programming. Typically, this is done by making sub-
classes of built-in UI controls. Both the possibilities for doing this,
the effects it may have, and how difficult it is to do this type of
adaptation varies between platforms, development tools and avail-
able libraries. When tailoring an existing UI control is an option,
this is usually a less expensive effort than implementing a self-
made UI control from scratch – depending on how much of the
existing functionality that is to be kept.

In cases where advanced adaptation of existing components is
not possible or feasible for the required custom UI controls, devel-
oping custom UI controls is an option. The benefit of doing this is
that it will give full control of the appearance and behaviour of
the control. The main disadvantage is the costs involved.

3.4.2. Design pattern: Finger friendly menu choices
There are design patterns for finger friendly interaction for a

number of interaction mechanisms, like finger friendly lists, me-
nus, buttons, keyboards, tab folders etc. Here we include finger
friendly menu choices as an example of such design patterns.

3.4.2.1. Use when. The solution is appropriate when the user wants
or is required to operate an application using finger interaction.

3.4.2.2. How. An alternative to standard menus or buttons that
are always visible is to provide menu choices in a small popup
panel at the bottom of the screen, as illustrated in Fig. 10, show-
ing how this is done in an iPhone application. Similar solutions
are applied on HTCs TouchFlo 3D user interface on Windows
Mobile.

3.4.2.3. Why. Menu items, both used as part of pull-up menus and
context menus are difficult to operate using fingers. The solution
also uses less screen space than buttons that are always visible.

3.5. Design that supports branding, is aesthetic, and utilize screen
space optimally

Most organizations developing applications want to apply their
own brand to the products. For application developers the brand-
ing may either be connected to the developer organization or the
user organization (which may be the same) or even a combination.

Branding of UIs may be difficult to combine with following
standard look and feel. If the branding includes a graphical profile,
the UI controls will look different from platform standard. This
may cause usability issues, among others that the UI is difficult
to learn. Certain visual aspects of UI controls, often added for aes-
thetic reasons may decrease the affordance of the control. In most
cases, branding occupies screen space. This is the case both for
added visual elements, and if the various controls are given a spe-
cial look.

3.5.1. General guidelines
A simple branding mechanism is to include the company logo

various places in the UI. A more extensive branding mechanism
is to also use colour and other visual elements from the graphical
profile of the company in UI controls and backgrounds. A more
subtle branding mechanism is to have a company specific UI de-
sign, i.e. a standard way of designing UIs that is specific for the
organization, and that is easy to recognize.

Table 2
Different UI component and how they may be adapted to finger use.

Component Appropriateness for finger navigation

Button Standard Button size is a bit small, but given a bigger size, Buttons are OK for finger use
TextBox For entering text, it is sufficient to click on a TextBox – the rest of the interaction is done through some kind of text entry mechanism. Clicking on a

TextBox is feasible using the finger when it has standard size, increasing the size will make it easier. Increasing the height may only be done by increasing
the font size (unless it is multiline) Changing the text in the TextBox – e.g. by selecting and changing three characters in the middle of the text – is not
trivial using just the fingers. Increasing the font size too much may easily result in a number of other usability problems

CheckBox CheckBoxes are not too difficult to operate with fingers, depending on the distance to other UI controls. To trigger a CheckBox, not only the tick box, but
the whole control (including the text and any additional space around the text) may be clicked. Given large enough size and distance to other components,
CheckBoxes are easy to control using fingers

RadioButton RadioButtons have the same characteristics with regards to finger friendliness as CheckBoxes. As RadioButtons always appear in groups, the distance/size
requirements are essential

ListBox/
ComboBox

A standard size ListBox/ComboBox is only partly suited for finger use, as both the elements in the list and possible scroll bars are fairly small. Increasing
the font size will make the elements in the list larger, but also makes it more likely that there is a need for using scroll bars (that do not increase in size)

ListView Using icons and LargeIcons as View, ListView may be appropriate to control with fingers.
TreeView A TreeView is difficult to control using fingers, and it is not possible to make it more appropriate by adjusting its properties
TabControl The tabs in a TabControl are not too difficult to operate with fingers, depending a bit on the size. The size of each tab is partly dependent on the length of

the text on the tab, and partly on the font size. All tabs should fit on the screen to avoid having to use the scrolling features of the TabControl (which are
not easy to operate using fingers). So there is a clear trade-off that needs to be balanced

ScrollBar ScrollBars are notoriously difficult to use on a PDA, even with stylus. The ScrollBars size may be increased to enhance their suitability – but then of course
leaving less space for other components. Using alternative scrolling mechanisms should be considered as an alternative

UpDown In their default size, UpDowns are almost impossible to operate using fingers, and there is no apparent way of adjusting size or fontsize
TrackBar TrackBar are not specifically easy to operate using fingers, and there are no obvious ways of adjusting their properties to make them more suited
MenuItem MenuItems (i.e. members of the pull-up menu on the bottom of the screen) are not too difficult to operate using the finger although the choices are fairly

small. There are no ways for the application to change the size of its MenuItems
ContextMenu Items in a ContextMenu are the same UI controls as MenuItems in a main menu, and are used in the same way – but triggering a ContextMenu is more

difficult than a main menu using the finger, as the user must hit the control to which the ContextMenu is connected

E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328 1323



Author's personal copy

3.5.2. Design pattern: Brand the standard
By this we mean adding branding elements to the platform

standard instead for building the elements that make up a brand
from scratch, as illustrated in Fig. 11.

3.5.2.1. Use when. The solution is appropriate when both branding
and compliance to standards are needed.

3.5.2.2. How. This should be done using subtle means, like chang-
ing background colours or adding a pattern or an abstract image
as part of controls and/or backgrounds. Also, using a specific font
may be a good branding mechanism. The main problem with
this solution is that the branding may be difficult to recognize.
On the other hand, implementing it does not need to be too
costly.

3.5.2.3. Why. The solution combines having controls that are close
to platform standards with branding.

3.5.3. Design pattern: Branding the controls
By this we mean generalizing the principle to also cover brand-

ing that is further from the standards, as illustrated in Fig. 12.

3.5.3.1. Use when. The solution is appropriate when branding is
more important than compliance to standards.

3.5.3.2. How. Specialized controls need to be developed.

3.5.3.3. Why. This will usually take up less screen space than add-
ing additional purely visual elements (like icons and advanced bor-
ders) as the main branding means. Doing more ‘‘radical” branding
of UI controls may be quite expensive to implement. Using purely
visual elements as branding means is less expensive to implement.

3.6. User interaction during waiting for long-lasting operations to
complete

One of the things that make this problem special on a mobile
device is that the necessary information for showing a reasonable
progress indication may not be available on the device. A related
issue is that it may be more difficult to predict the duration, e.g.
when data is transported using a wireless connection with varying
bandwidth. Also, obtaining the necessary information for showing
progress – and partly also the process of showing it – may require
more overhead on a mobile device than on a PC. As it usually is
impossible, difficult or inconvenient to use other applications than
the one performing the long-lasting operation on the device, long-
lasting operations will probably make mobile users more impa-
tient than a PC user. This increases the need for good feedback
solutions.

The issues just presented may make it difficult to use the estab-
lished mechanisms for showing progress for long-lasting opera-
tions. Sometimes it may be a trade-off between giving
information and not delaying the long-lasting operation even
more. Balancing this trade-off is probably the main problem when
trying to find an optimal solution for user feedback during long-
lasting operations.

3.6.1. General guidelines
When faced with a problem like the current where there are no

optimal solutions, a possible approach is to try to eliminate the
problem instead of solving it. In this case it means trying to avoid

Fig. 10. Finger friendly menu in photo application on iPhone.

Fig. 11. Adding branding elements within a standard UI. Fig. 12. Compact RSS client with branded controls.

1324 E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328



Author's personal copy

or bypass the long-lasting operation. There are of course lots of situ-
ations where this is not possible, because an operation requires
transferring large amounts of data or very much computation. Still,
trying to find smart implementations may speed up the applica-
tion. When there is a need to transfer large amounts of data, a
smart caching solution both pre-fetching data that the user may
start working with before it is asked for, and continuing to transfer
data while the user works with it – even with reduced performance
– may be a much better solution for the user than waiting. If there
is a need for a very demanding computation involving modest
amounts of data, doing the computation on a server computer in-
stead of on the device may enhance performance significantly. This
is of course only possible if the application is on-line.

Given that it indeed is not avoidable that the user has to wait,
information may be given on three levels. The normal way of doing
this is providing a wait cursor, preferably supplied with a message
saying ‘‘please wait. . .”. A more advanced solution is to inform the
user that something is happening, and indicate progress. This is
normally done with a counter and/or a slider/gauge that shows
the percentage of time spent. If it in addition is possible to estimate
in actual time values the time left, this is a benefit for the user. The
third level is presented as a pattern below.

3.6.2. Design pattern: Inform the user about what is happening
Informing the user about what is happing (in addition to indi-

cating progress).

3.6.2.1. Use when. The solution is appropriate when this level of
information is required or easily obtained.

3.6.2.2. How. This may be done as a scrolling text that the user can
browse back in, just a small list showing the latest events, or as sin-
gle text changing as events happen, as illustrated in Fig. 13. Inde-
pendent of how the information is shown, it should be presented
in a way that is comprehensible by the user – i.e. related to user
concepts and user tasks.

3.6.2.3. Why. Providing information about level of progress as well
as what is happening will make the user more patient.

4. Validation

The patterns collection was presented in half day tutorials at
the HCI International conference in 2007 [9] and at the IASTED
HCI conference in 2008 [10]. At the tutorials, the structure of the

patterns collection was presented, and all problems were pre-
sented at a very brief level. Then, 11 or 12 of the 26 problems were
presented in more detail. Partly, the problems considered most
general was chosen, but the selection included problems from all
the problem areas (and thus also all the main problem areas). Dur-
ing the presentation, the participants were asked to fill inn a ques-
tionnaire. In addition to background information, the participants
scored the relevance of the main problem areas (based on the brief
presentation of all patterns), the relevance and usefulness of each
of the presented problems, and finally the relevance and usefulness
of the patterns collection and such as well as their expectations for
future use of the patterns collection. Relevance, usefulness and fu-
ture use were scored on a scale from 1 to 6, where 1 = Not relevant
at all/Not useful at all and 6 = Highly relevant/Very useful.

4.1. Respondents

Forty-eight of the participants at the tutorials handed in the
questionnaire. There was a small majority of male, age varied from
25 to 50, most being around 30 years old. Geographically, the larg-
est group had their origin in Asia, followed by Europeans. All con-
tinents are represented among the participants. Looking at
educational level, most participants were on master level, closely
followed by Ph.D. holders. There were relatively few undergradu-
ates. A majority had a technical educational background. UI devel-
opment experience varied from 0 to 20 years, the majority having
5 years or less experience. Experience in developing mobile solu-
tions varied from 0 to 6 years, the majority having 1 year or less
experience. Regarding device class, the largest respondent group
having a preference was focusing on SmartPhones. Respondents
having a preferred main platform were equally spread between
Windows Mobile and other platforms.

4.2. Results

Scores on the main problem areas – based on a brief presenta-
tion of all the problems – shows an average score on relevance of
5.0 for Utilizing screen space, on 5.2 for Interaction mechanisms,
and 4.7 for Design at large. Scores on the patterns collection as
such – given after everything was presented – shows an average
score on relevance of 4.8, on usefulness of 4.4 and on future use
of the patterns collection of 4.3. All these scores verify that the pat-
terns collection both addresses relevant problems and gives useful
and practical advices on how to solve these problems. Regarding
subjects scoring usefulness higher than future use, they may know
many of the solutions in beforehand, and thus find the solutions
useful, but do not need to consult the patterns collection to be able
to utilize the solutions.

Looking at the scores for the individual problems that were pre-
sented in more detail, the scores vary a bit, but are still fairly high.
Fig. 14 shows the average scores for relevance and usefulness for
the 11 problems presented at both tutorials (names marked with
asterisks indicate the problems presented above), sorted descend-
ing on sum of the scores for relevance and usefulness.

As for the patterns collection as such, the average scores for rel-
evance are higher than the corresponding scores for usefulness for
all problems but one. This is not surprising, as it is usually easier to
agree with a problem description than a proposed solution.

Looking a bit more into the connection between relevance and
usefulness, making a scatter plot of the values for each problem
may be used as a way to categorize the different problems. Thus
a problem with high score for both relevance and usefulness are
excellent problems/design patterns. Problems with low scores for
both relevance and usefulness should be considered removed from
the collection. Problems with high relevance but low usefulness
need to be improved. The last combination (low relevance and highFig. 13. Informing the user what is happening.

E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328 1325



Author's personal copy

usefulness) is difficult to interpret, but as all but one problem score
higher on relevance than usefulness, and this problem scores high
on both, no problems fall into this combination. If we interpret
high score to be on the top half of the scale, all problems but one
fall into the excellent category. If we adjust high scores to mean
4 or above, some extra problems fall into the category ‘‘needs
improvement” (like the problems on branding, horizontal scrolling
and stylus free interaction presented above). Even with this adjust-
ment, no problems are candidates of exclusion from the collection.
In addition to the problems with scores below 4 for usefulness, also
the problems where the difference between relevance score and
usefulness scores are highest are candidates for further work on
finding new and better solutions.

It may also be noted that correlation analyses show that the
scores for relevance and usefulness correlates on the 0.01 level
for 9 of the 11 problems. The problems not correlating on this
are Mechanisms for entering text and Branding. Also, the scores
for relevance for the collection as such, usefulness for the patterns
collection as such and future use of the patterns collection all cor-
relate pairwise on the 0.01 level. Furthermore, the scores seems
consistent in the way that both relevance scores and usefulness
scores correlate on the 0.01 or 0.05 level with the relevance and
usefulness scores for the collection as such. The same is the case
for average relevance and usefulness score correlated respectively
with the relevance and usefulness scores for the collection as such.

Analyses of variance (ANOVA) show some patterns for five of
the six problems presented in this paper. Usefulness scores for
Mechanisms for entering text are significantly higher (0.05 level)
for subjects coming from Asia. This may be explained by the extra
challenges related to entering text in many Asian languages. Fur-
thermore, subjects working with applications for personal produc-
tivity and professional application score usefulness significantly
higher (0.05 level) for the same problem. This is not surprising as
the patterns collection draws much of its background from this
type of applications, and because it focus much on professional

applications in general and forms-based UIs in particular. Useful-
ness scores for the problem Show and hide SW keyboard are signif-
icantly higher (0.05 level) for subjects with 0–1 years of mobile
development experience than for subjects with longer experience.
This problem may thus be considered fairly obvious for developers
having worked with mobile UIs for some time. The same is proba-
bly the case for the scores for usefulness for the problem Horizon-
tal scrolling, that are significantly higher (0.01 level) for subjects
with 0–1 years of mobile development experience than for subjects
with longer experience. The same effect may also explain that the
usefulness score for the same problem is significantly higher (0.05
level) for devices classes other than SmartPhones. The relevance
score for the problem Long lasting operations, scores significantly
higher (linear on 0.05 level) for subjects with longer UI develop-
ment experience. This shows that this problem pinpoint an issue
that developers may need some experience to realize the impor-
tance of. A more surprising finding is that both relevance and use-
fulness scores for the problem Stylus free interaction receives
significantly higher scores from female than from male subjects.
One could speculate that a technical device like a stylus appeals
more to male than female users, or that finger navigation is more
suitable for users with smaller fingers, but both explanations are
dubious. Relevance scores for the same problem shows that sub-
jects with non-technical educational background have higher
scores than subjects with technical background. This may be ex-
plained by the special layout and esthetical challenges posed by
finger friendly mobile UIs.

For the whole collection, there are a number of general pat-
terns. The most significant ones are for the independent variables
gender, mobile development experience and main device class.
The collection seems to appeal more to female than to male par-
ticipants, the patterns are considered more useful to participants
with little mobile development experience than participants with
more such experience, and the collection appeals most to partic-
ipants focusing on other device types than SmartPhone. The find-

0

1

2

3

4

5

6

* M
ec

ha
nis

ms f
or 

en
ter

ing
 te

xt 

Mec
ha

nis
ms f

or 
pa

ck
ing

 

Mult
i m

od
al 

int
era

cti
on

 

Num
eri

ca
l k

ey
bo

ard
 

Lis
t e

lem
en

ts 

Mec
ha

nis
ms f

or 
gro

up
ing

 

* S
ho

w an
d h

ide
 SW ke

yb
oa

rd

* L
on

g l
as

tin
g o

pe
rat

ion
s 

* S
tyl

us
 fre

e i
nte

rac
tio

n 

* H
orr

iso
nta

l s
cro

llin
g 

* B
ran

din
g 

Relevance
Usefulness

Fig. 14. Average scores for relevance and usefulness.

1326 E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328



Author's personal copy

ing regarding gender is difficult to explain. The finding regarding
experience is interesting compared to an other (less significant)
finding showing generally higher scores for subjects with longer
UI development experience. This combination indicates that the
patterns collection is best suited for experienced UI developers
wanting to start developing mobile UIs. This is not a bad target
group for such a patterns collection. The finding regarding device
types is a bit surprising as the patterns collection use many
examples from Windows Mobile and SmartPhones. The finding
may be explained by a presumption that the patterns collection
contains more ‘‘news” for the participants without experience
with Windows Mobile and SmartPhones.

5. Using patterns format to document design knowledge

In this section we take a closer look at the appropriateness of
using design patterns to document user interface design knowl-
edge. The chosen patterns approach is in many ways well suited,
as it captures the essential aspects of a problem and gives both
general guidelines and more specific solutions through the pat-
terns. Also, as design patterns may be on different abstraction lev-
els they can be used to describe problems of different ‘‘sizes”, as
shown in the examples above. Furthermore, dividing a problem
field into a limited number of well defined problems makes it pos-
sible to handle a set of manageable problems separately. Finally,
having a patterns collection makes it possible to combine the just
mentioned ‘‘divide and rule” principle with having an overall
structure.

Despite these pros, there are also a number of problems with
using patterns in this way. As the patterns format use its own
structure, it is difficult to combine this with a rich problem struc-
ture without ending up with too deep hierarchies. In our case, we
choose to present the problem structure separately, and with this
as a basis present the individual problems and design patterns sep-
arately in a flat structure. This challenge is a general one for pat-
terns collections handling more than just a very small number of
problems, as using the collection will be very difficult without a
structure grouping the problems in it.

The biggest challenge we have had using the patterns format
is the connection between problems and solutions. Very often
this is a many to many connection, i.e. in addition to having
many solutions to one problem, a given solution may apply to
more than one problem. An example of the latter occurs in the
problem area ‘‘flexible user interfaces” in the main problem area
‘‘Utilizing screen space”. The problems addressed in this problem
area may together be solved with a set of techniques for han-
dling adaptive and adaptable UIs both at design and especially
at run time [12], but the solution for each pair of problems only
partly overlap.

Presenting the same or very similar solutions to a number of
problems, either causes a lot of cross-references between the
individual patterns, or large amounts of repetition. Cross-refer-
encing reduces the readability of the descriptions, while large
amounts of repetition make the collection difficult to maintain.
In prior versions of the patterns collection [11] we chose to use
cross-references, as is being done in other patterns collections
[4]. Recently, we have restructured the patterns collection so that
each pattern represents either one solution or a unique combina-
tion of one problem and one solution. This has reduced the need
for cross-referencing, but it has increase the number of patterns,
thus making it more difficult to get an overview of the patterns
collection. This is one of the reasons we have kept the labelled
problem as part of the problem structure (and not replaced it
with design pattern), and also kept some of the solution descrip-
tions (i.e. the general guidelines) independent of the individual
design patterns.

6. Related work

There are a number of patterns collections and even collections of
patterns collections on the web,1,2,3,4,5 see also [3] for an assessment
of such collections. There are also a few collections of patterns for mo-
bile user interfaces, like The Design Pattern Wiki6 and Little Springs
mobile UI design patterns.7 The latter overlaps with two of our main
problem areas. The patterns presented in [15], although focusing on
mobile interaction, are much wider in its scope than our collection,
with only two user interface patterns. [4,5] present a design patterns
collection for ubiquitous computing that is fairly large, but has a
broader scope with patterns that are on a higher abstraction level
and/or are less comprehensive in the suggested set of solutions than
our patterns. Also [2] presents a patterns collection for ubiquitous
computing, though on a preliminary stage, presenting a set of what
the authors call pre-patterns because they are not in common use.

7. Conclusions and future work

In this paper we have presented a structured collection of user
interface design patterns for mobile applications. The structure is
valuable both as an index to identifying patterns to use, and gives
a fairly comprehensive overview of the problems that needs to be
addressed when designing user interfaces for mobile applications.
We have presented six individual problems with connected design
patterns in some detail (but still abbreviated versions of the origi-
nal problem and design patterns descriptions, as well as the num-
ber of design patterns included for each problem). In addition to
representing important and relevant problems, they also act as
examples of problems in all the three main problem areas, and thus
show the breath of the patterns collection. The patterns are also on
different levels of abstraction, showing how patterns may be used
to present problems and solutions on different levels of detail.

The patterns collection has been validated using a questionnaire
at two different tutorials. This validation shows that both the indi-
vidual patterns assessed and the whole collection were perceived
as relevant and useful by the participants, and that it is likely that
they will use the collection in future work. It also identifies pat-
terns that need more work.

Finally, we have discussed pros and cons of using a patterns col-
lection for documenting design knowledge. The main pro being the
ability to divide a large problem area into a structured set of man-
ageable problems, the main con being that the same solution may
apply to a number of problems, causing a lot of cross-references.

To manage this better, we have currently restructured the pat-
terns collection. Furthermore, the collection is continuously being
improved and enhanced, e.g. in the areas of multimodal interaction
and exploiting context.

Acknowledgments

The work on which this paper is based is supported by the UM-
BRA and FLAMINCO projects funded by the Norwegian Research
Council and the industry partners in these projects, that have also
given contributions to the contents of the patterns collection. I
would also like to thank my colleagues Asbjørn Følstad and Jan
Heim for contributions to designing the questionnaire used for

1 http://www.developer.yahoo.com/ypatterns/.
2 http://www.designinginterfaces.com/.
3 http://www.visi.com/~snowfall/InteractionPatterns.html.
4 http://www.welie.com/patterns/.
5 http://www.deyalexander.com/resources/design-patterns.html.
6 http://www.gibbert.net/DPWiki (in German).
7 http://www.patterns.littlespringsdesign.com/~newlsdpatterns/index.php/

Main_Page.

E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328 1327



Author's personal copy

the validation and in analysing the results, and Mike Stiso for con-
tributions to the structure and presentation of the patterns collec-
tion online.

References

[1] Borchers J. A pattern approach to interaction design. John Wiley & Sons; 2001.
ISBN:0471498289.

[2] Chung ES, Hong JI, et al. Development and evaluation of emerging design
patterns for ubiquitous computing. DIS2004, ACM, Cambridge (Massachusetts,
USA); 2004.

[3] Deng J et al. Managing UI pattern collections. In: Proceedings of the 6th ACM
SIGCHI New Zealand chapter’s international conference on computer–human
interaction; 2005.

[4] Van Duyne DK, Landay JA. Design patterns, course documentation; 2004.
[5] Landay JA, Borriello G. Design patterns for ubiquitous computing. In: IEEE

computer; August 2003.
[6] Gamma E, Helm R, Johnson R, Vlissides J. Design patterns – elements of

reusable object-oriented software. Addison-Wesley; 1995.
[7] Nilsson EG, Rahlff O-W. Mobile and stationary user interfaces – differences and

similarities based on two examples. In: Proceedings of HCI international; 2003.

[8] Nilsson EG. Design guidelines for mobile applications. SINTEF Report STF90
A06003; 2005. ISBN:82-14-03820-0.

[9] Nilsson EG. Design patterns for user interfaces on mobile equipment. Tutorial
documentation, HCI international; 2007.

[10] Nilsson EG. Design patterns for user interfaces on mobile equipment. Tutorial
documentation, IASTED HCI; 2008.

[11] Nilsson EG. Design patterns for user interface for mobile applications. In:
Proceedings of 7th international conference on computer-aided design of user
interfaces (CADUI); 2008.

[12] Nilsson EG, Floch J, et al. Model-based user interface adaptation. Comput
Graph 2006;30(5):692–701.

[13] Rahlff O-W. State of the art in using context in mobile information systems.
SINTEF report A2299; 2007. ISBN:978-82-14-04069-2.

[14] Rolfsen RK. State of the art in form-based mobile user interface design and
configuration. SINTEF report A2300; 2007. ISBN:978-82-14-04070-8.

[15] Roth J. Patterns of mobile interaction. Person Ubiquit Comput 2002;6(4).
[16] Vraalsen F, Holter T, et al. A multimodal context aware mobile maintenance

terminal for noisy environments. IFIP mobile information systems (MOBIS
‘04).

[17] Vraalsen F. State of the art in design of mobile user interfaces. SINTEF report
STF90 A05014; 2005. ISBN:82-14-03648-8.

[18] van Welie M, van der Veer GC. Pattern languages in interaction design:
structure and organization. In: Proceedings of interact; 2003.

1328 E.G. Nilsson / Advances in Engineering Software 40 (2009) 1318–1328


