Abstract
This chapter surveys routing algorithms for wireless sensor networks that use geometric ideas and abstractions. Wireless sensor networks have a unique geometric character as the sensor nodes are embedded in, and designed to monitor, the physical space. Thus the geometric embedding of the network can be exploited for scalable and efficient routing algorithm design. This chapter starts with geographical routing that use nodes’ geographical locations to guide the choice of the next hop node on the routing path. The scalability of geographical routing motivates more work on the design of virtual coordinates with which greedy routing algorithms are developed and applied to route messages in the network. The last section is concerned about data-centric routing, in which a query is routed to reach the sensor node holding data of interest. Thus the challenge is to discover the “source node” that possess the data as well as route the message there.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A graph is rigid in the plane is one can not continuous deform the shape of the graph without altering the lengths of the edges. A graph is globally rigid if it admits a unique embedding in the plane, subject to global rotation and translations.
- 2.
Two nodes within distance 1 are connected by an edge in a unit disk graph.
- 3.
A graph is 3-connected if it remains connected after the removal of any 2 nodes.
- 4.
The problem is to find a destination on a circle without knowing whether it is shorter to go clockwise or counterclockwise. With a doubling trick, one can first take 1 step clockwise from the starting point. If the destination is not reached, turn back and go counterclockwise from the starting point for 2 steps. If the destination is still not reached, turn back and go clockwise from the starting point for 4 steps and so on. Within O(k) steps in total, one can find the destination if the destination is k steps away.
References
I. Abraham, D. Dolev, and D. Malkhi. LLS: A locality aware location service for mobile ad hoc networks. In DIALM-POMC ’04: Proceedings of the 2004 joint workshop on Foundations of mobile computing, 2004. ACM Press, New York, pages 75–84.
J. Aspnes, D. Goldenberg, and Y. R. Yang. On the computational complexity of sensor network localization. In The First International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS), pages 32–44, 2004.
B. Awerbuch and D. Peleg. Concurrent online tracking of mobile users. In SIGCOMM ’91: Proceedings of the conference on Communications architecture & protocols, 1991. ACM Press, New York, pages 221–233.
M. Badoiu, E. D. Demaine, M. T. Hajiaghayi, and P. Indyk. Low-dimensional embedding with extra information. In SCG ’04: Proceedings of the twentieth annual symposium on Computational geometry, 2004. ACM Press, New York, pages 320–329.
P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user location and tracking system. In IEEE INFOCOM, Volume 2, pages 775–784, 2000.
P. Biswas and Y. Ye. Semidefinite programming for ad hoc wireless sensor network localization. In Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, pages 46–54, 2004.
L. Blazević, L. Buttyán, S. Capkun, S. Giordano, H. Hubaux, and J. L. Boudec. Self-organization in mobile ad hoc networks: The approach of terminodes. IEEE Communications Magazine, pages 166–175, 2001.
I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and Applications. Springer-Verlag, Berlin 1997.
P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7(6):609–616, 2001.
D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In Proc. of the 1st ACM Int’l Workshop on Wireless Sensor Networks and Applications (WSNA), pages 22–31, September 2002.
H. Breu and D. G. Kirkpatrick. Unit disk graph recognition is NP-hard. Computational Geometry: Theory and Applications, 9(1–2):3–24, 1998.
J. Bruck, J. Gao, and A. Jiang. Localization and routing in sensor networks by local angle information. In Proceedings of the Sixth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’05), pages 181–192, May 2005.
J. Bruck, J. Gao, and A. Jiang. MAP: Medial axis based geometric routing in sensor networks. Wireless Networks, 13(6):835–853, 2007.
M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron. Virtual ring routing: Network routing inspired by dhts. In SIGCOMM ’06: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications, 2006. ACM Press, New York, pages 351–362.
A. Caruso, A. Urpi, S. Chessa, and S. De. GPS free coordinate assignment and routing in wireless sensor networks. In Proceedings of the 24th Conference of the IEEE Communication Society (INFOCOM), Volume 1, pages 150–160, March 2005.
H. T.-H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On hierarchical routing in doubling metrics. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, 2005. Society for Industrial and Applied Mathematics, Pennsylvania, pages 762–771.
B. Chen and R. Morris. L+: Scalable landmark routing and address lookup for multi-hop wireless networks. Technical Report MIT-LCS-TR-837, Massachusett Institute of Technology, 2002.
M. B. Chen, C. Gotsman, and C. Wormser. Distributed computation of virtual coordinates. In SCG ’07: Proceedings of the twenty-third annual symposium on Computational geometry, 2007. ACM Press, New York, pages 210–219.
Y.-C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm. Accuracy characterization for metropolitan-scale wi-fi localization. In MobiSys ’05: Proceedings of the 3rd international conference on Mobile systems, applications, and services, 2005. ACM Press, New York, pages 233–245.
H. S. M. Coxeter. Introduction to Geometry. Wiley, New York, 2nd edition, 1969.
R. Dhandapani. Greedy drawings of triangulations. In SODA ’08: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, 2008.
L. Doherty, L. E. Ghaoui, and S. J. Pister. Convex position estimation in wireless sensor networks. In IEEE Infocom, Volume 3, pages 1655–1663, April 2001.
A. Efrat, C. Erten, D. Forrester, A. Iyer, and S. G. Kobourov. Force-directed approaches to sensor localization. In Proceedings of the 8th Workshop on Algorithm Engineering and Experiments (ALENEX), pages 108–118, 2006.
Q. Fang, J. Gao, and L. Guibas. Locating and bypassing routing holes in sensor networks. In Mobile Networks and Applications, Volume 11, pages 187–200, 2006.
Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang. GLIDER: Gradient landmark-based distributed routing for sensor networks. In Proceedings of the 24th Conference of the IEEE Communication Society (INFOCOM) Volume 1, pages 339–350, March 2005.
Q. Fang, J. Gao, and L. J. Guibas. Landmark-based information storage and retrieval in sensor networks. In The 25th Conference of the IEEE Communication Society (INFOCOM’06), pages 1–12, April 2006.
S. P. Fekete, M. Kaufmann, A. Kröller, and N. Lehmann. A new approach for boundary recognition in geometric sensor networks. In Proceedings 17th Canadian Conference on Computational Geometry, pages 82–85, 2005.
S. P. Fekete, A. Kröller, D. Pfisterer, S. Fischer, and C. Buschmann. Neighborhood-based topology recognition in sensor networks. In ALGOSENSORS, Volume 3121 of Lecture Notes in Computer Science, 2004 Springer, Berlin, pages 123–136.
G. G. Finn. Routing and addressing problems in large metropolitan-scale internetworks. Technical Report ISU/RR-87-180, ISI, March 1987.
R. Flury and R. Wattenhofer. MLS: An efficient location service for mobile ad hoc networks. In MobiHoc ’06: Proceedings of the seventh ACM international symposium on Mobile ad hoc networking and computing, 2006. ACM press, New York, pages 226–237.
R. Fonesca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and I. Stoica. Beacon vector routing: Scalable point-to-point routing in wireless sensornets. In Proceedings of the 2nd Symposium on Networked Systems Design and Implementation (NSDI), pages 329–342, May 2005.
S. Funke. Topological hole detection in wireless sensor networks and its applications. In DIALM-POMC ’05: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing, 2005. ACM Press, New York, pages 44–53.
S. Funke, L. J. Guibas, A. Nguyen, and Y. Wang. Distance-sensitive routing and information brokerage in sensor networks. In IEEE International Conference on Distributed Computing in Sensor System (DCOSS’06), pages 234–251, June 2006.
S. Funke and C. Klein. Hole detection or: “How much geometry hides in connectivity?”. In SCG ’06: Proceedings of the twenty-second annual symposium on Computational geometry, pages 377–385, 2006.
S. Funke and N. Milosavljević. Guaranteed-delivery geographic routing under uncertain node locations. In Proceedings of the 26th Conference of the IEEE Communications Society (INFOCOM’07), pages 1244–1252, May 2007.
S. Funke and N. Milosavljević. Network sketching or: “how much geometry hides in connectivity? - part II”. In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007. Society for Industrial and Applied Mathematics, Pennsylvania, pages 958–967.
D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Complex behavior at scale: An experimental study of low-power wireless sensor networks. Technical Report UCLA/CSD-TR 02-0013, UCLA, 2002.
J. Gao, L. Guibas, and A. Nguyen. Deformable spanners and their applications. Computational Geometry: Theory and Applications, 35(1–2):2–19, 2006.
J. Gao, L. J. Guibas, S. Y. Oudot, and Y. Wang. Geodesic Delaunay triangulations and witness complexes in the plane. In Proceedings of the ACM–SIAM Symposium on Discrete Algorithms (SODA’08), 571–580, January 2008.
R. Ghrist and A. Muhammad. Coverage and hole-detection in sensor networks via homology. In Proceedings the 4th International Symposium on Information Processing in Sensor Networks (IPSN’05), pages 254–260, 2005.
D. K. Goldenberg, P. Bihler, Y. R. Yang, M. Cao, J. Fang, A. S. Morse, and B. D. O. Anderson. Localization in sparse networks using sweeps. In MobiCom ’06: Proceedings of the 12th annual international conference on Mobile computing and networking, 2006, ACM Press, New York, pages 110–121.
C. Gotsman and Y. Koren. Distributed graph layout for sensor networks. In Proceedings of the International Symposium on Graph Drawing, pages 273–284, September 2004.
Y.-J. K. R. Govindan, B. Karp, and S. Shenker. Lazy cross-link removal for geographic routing. In SenSys ’06: Proceedings of the 4th international conference on Embedded networked sensor systems, 2006. ACM Press, New York, pages 112–124.
B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker. DIFS: A distributed index for features in sensor networks. In Proceedings of First IEEE International Workshop on Sensor Network Protocols and Applications, pages 163–173, Anchorage, Alaska, May 2003.
A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. IEEE Computer Society, Washington, page 534-543.
A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy of a context-aware application. In MobiCom ’99: Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, 1999, ACM Press, New York, pages 59–68.
B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Positioning Systems: Theory and Practice. 5th edition, Springer, Berlin, 2001.
C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and robust communication paradigm for sensor networks. In ACM Conference on Mobile Computing and Networking (MobiCom), pages 56–67, 2000.
R. Jain, A. Puri, and R. Sengupta. Geographical routing using partial information for wireless ad hoc networks. IEEE Personal Communications, 8(1):48–57, Feb. 2001.
D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin. Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, 1997. ACM Press, New york, pages 654–663.
B. Karp and H. Kung. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pages 243–254, 2000.
Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing made practical. In Proceedings of the Second USENIX/ACM Symposium on Networked System Design and Implementation (NSDI 2005), May 2005.
Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geographic face routing. In DIALM-POMC ’05: Proceedings of the 2005 joint workshop on Foundations of mobile computing, 2005. ACM Press, New York, pages 34–43.
R. Kleinberg. Geographic routing using hyperbolic space. In Proceedings of the 26th Conference of the IEEE Communications Society (INFOCOM’07), pages 1902–1909, 2007.
E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In Proceedings 11th Canadian Conference on Computational Geometry, pages 51–54, 1999.
P. Krishnan, A. S. Krishnakumar, W.-H. Ju, C. Mallows, and S. Ganu. A system for LEASE: System for location estimation assisted by stationary emitters for indoor RF wireless networks. In IEEE Infocom, Volume 2, pages 1001–1011, Hongkong, March 2004.
A. Kröller, S. P. Fekete, D. Pfisterer, and S. Fischer. Deterministic boundary recognition and topology extraction for large sensor networks. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1000–1009, 2006.
F. Kuhn, T. Moscibroda, and R. Wattenhofer. Unit disk graph approximation. In Proceedings of the 2004 Joint Workshop on Foundations of Mobile Computing, pages 17–23, 2004.
F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing: Of theory and practice. In Proceedings 22nd ACM International Symposium on the Principles of Distributed Computing (PODC), pages 63–72, 2003.
F. Kuhn, R. Wattenhofer, and A. Zollinger. Asymptotically optimal geometric mobile ad-hoc routing. In Proceedings of the 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pages 24–33, 2002.
A. M. Ladd, K. E. Bekris, A. Rudys, L. E. Kavraki, D. S. Wallach, and G. Marceau. Robotics-based location sensing using wireless ethernet. In MobiCom ’02: Proceedings of the 8th annual international conference on Mobile computing and networking, 2002. ACM Press, New York, pages 227–238.
J. Li, J. Jannotti, D. Decouto, D. Karger, and R. Morris. A scalable location service for geographic ad-hoc routing. In Proceedings of 6th ACM/IEEE International Conference on Mobile Computing and Networking, pages 120–130, 2000.
Z. Li, W. Trappe, Y. Zhang, and B. Nath. Robust statistical methods for securing wireless localization in sensor networks. In IPSN ’05: Proceedings of the 4th international symposium on Information processing in sensor networks, Piscataway, NJ, USA, 2005. IEEE Press, New York, pages 91–98.
N. Linial, L. Lovász, and A. Wigderson. Rubber bands, convex embeddings and graph connectivity. Combinatorica, 8(1):91–102, 1988.
X. Liu, Q. Huang, and Y. Zhang. Combs, needles, haystacks: Balancing push and pull for discovery in large-scale sensor networks. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems, 2004, ACM Press, New York pages 122–133.
S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A tiny aggregation service for ad-hoc sensor networks. SIGOPS Operating Systems Review, 36(SI):131–146, 2002.
Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith. S4: Small state and small stretch routing protocol for large wireless sensor networks. In Proceedings of the 4th USENIX Symposium on Networked System Design and Implementation (NSDI 2007), April 2007.
D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization with noisy range measurements. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked sensor systems, 2004. ACM Press, New York, pages 50–61.
A. Nasipuri and R. E. Najjar. Experimental Evaluation of an Angle Based Indoor Localization System. In Proceedings of the 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pages 1–9, Boston, MA, April 2006.
J. Newsome and D. Song. GEM: Graph embedding for routing and data-centric storage in sensor networks without geographic information. In SenSys ’03: Proceedings of the 1st international conference on Embedded networked sensor systems, 2003. ACM Press, New York, pages 76–88.
A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas. Landmark selection and greedy landmark-descent routing for sensor networks. In Proceedings of the 26th Conference of the IEEE Communications Society (INFOCOM’07), pages 661–669, May 2007.
D. Niculescu and B. Nath. Ad hoc positioning system (APS). In IEEE GLOBECOM, pages 2926–2931, 2001.
D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In IEEE INFOCOM, Volume 22, pages 1734–1743, March 2003.
D. Niculescu and B. Nath. Error characteristics of ad hoc positioning systems (APS). In MobiHoc ’04: Proceedings of the 5th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages 20–30, 2004.
D. Niculescu and B. Nath. VOR base stations for indoor 802.11 positioning. In MobiCom ’04: Proceedings of the 10th annual international conference on Mobile computing and networking, 2004. ACM Press, New York, pages 58–69.
C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric routing. Theoretical Computer Science, 344(1):3–14, 2005.
N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-support system. In MobiCom ’00: Proceedings of the 6th ACM Annual International Conference on Mobile Computing and Networking, pages 32–43, 2000.
A. Rao, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic routing without location information. In Proceedings of the 9th annual international conference on Mobile computing and networking, 2003. ACM Press, New York, pages 96–108.
S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, 2001. ACM Press, New York, pages 161–172.
S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT: A geographic hash table for data-centric storage in sensornets. In Proceedings 1st ACM Workshop on Wireless Sensor Networks ands Applications, pages 78–87, 2002.
A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In Middleware ’01: Proceedings of the IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg, London, UK, 2001. Springer-Verlag, Berlin, pages 329–350.
R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in sensor networks. In Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pages 286–297, September 2006.
A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings 7th Annual International Conference on Mobile Computing and Networking (MobiCom 2001), Rome, Italy, July 2001. ACM Press, New York, pages 166–179.
A. Savvides, H. Park, and M. B. Strivastava. The n-hop multilateration primitive for node localization problems. Mobile Networks and Applications, 8(4):443–451, 2003.
K. Seada, A. Helmy, and R. Govindan. On the effect of localization errors on geographic face routing in sensor networks. In IPSN ’04: Proceedings of the third international symposium on Information processing in sensor networks, 2004. ACM Press, New York, pages 71–80.
Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization from mere connectivity. In MobiHoc ’03: Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pages 201–212, 2003.
S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-centric storage in sensornets. SIGCOMM Computer Communication Review, 33(1):137–142, 2003.
A. M.-C. So and Y. Ye. Theory of semidefinite programming for sensor network localization. In SODA ’05: Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, 2005. Society for Industrial and Applied Mathematics, Pennsylvania, pages 405–414.
I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer communications, 2001. ACM Press, New York, pages 149–160.
I. Stojmenovic. A routing strategy and quorum based location update scheme for ad hoc wireless networks. Technical Report TR-99-09, SITE, University of Ottawa, September, 1999.
I. Stojmenovic and X. Lin. Loop-free hybrid single-path/flooding routing algorithms with guaranteed delivery for wireless networks. IEEE Transactions on Parallel and Distributed Systems, 12(10):1023–1032, 2001.
I. Stojmenovic and X. Lin. Power-aware localized routing in wireless networks. IEEE Transactions on Parallel and Distributed Systems, 12(11):1122–1133, 2001.
H. Takagi and L. Kleinrock. Optimal transmission ranges for randomly distributed packet radio terminals. IEEE Transactions on Communications, 32(3):246–257, 1984.
R. Thomas and X. Yu. 4-connected projective-planar graphs are hamiltonian. Journal of Combinational Theory Series B, 62(1):114–132, 1994.
M. Thorup and U. Zwick. Approximate distance oracles. In Proceedings ACM Symposium on Theory of Computing, pages 183–192, 2001.
M. Thorup and U. Zwick. Compact routing schemes. In SPAA ’01: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures, 2001. ACM Press, New York, pages 1–10.
P. F. Tsuchiya. The landmark hierarchy: A new hierarchy for routing in very large networks. In SIGCOMM ’88: Symposium proceedings on Communications architectures and protocols, 1988. ACM Press, New York, pages 35–42.
Y. Wang, J. Gao, and J. S. B. Mitchell. Boundary recognition in sensor networks by topological methods. In Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pages 122–133, September 2006.
R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge location system. ACM Transactions on Information Systems, 10:91–102, January 1992.
M. Wattenhofer, R. Wattenhofer, and P. Widmayer. Geometric Routing without Geometry. In 12th Colloquium on Structural Information and Communication Complexity (SIROCCO), Le Mont Saint-Michel, France, May 2005.
K. Whitehouse and D. Culler. A robustness analysis of multi-hop ranging-based localization approximations. In IPSN ’06: Proceedings of the fifth international conference on Information processing in sensor networks, 2006. ACM Press, New York, pages 317–325.
K. Whitehouse, C. Karlof, A. Woo, F. Jiang, and D. Culler. The effects of ranging noise on multihop localization: an empirical study. In IPSN ’05: Proceedings of the 4th international symposium on Information processing in sensor networks, Piscataway, NJ, USA, 2005. IEEE Press, New York, pages 73–80.
F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination model for large-scale wireless sensor networks. In MobiCom ’02: Proceedings of the 8th annual international conference on Mobile computing and networking, 2002. ACM Press, New York, pages 148–159.
M. Youssef, A. Agrawala, and U. Shankar. WLAN location determination via clustering and probability distributions. Technical report, University of Maryland, College Park, MD, March 2003.
F. Zhang, H. Li, A. A. Jiang, J. Chen, and P. Luo. Face tracing based geographic routing in nonplanar wireless networks. In Proceedings of the 26th Conference of the IEEE Communications Society (INFOCOM’07), pages 2243–2251, May 2007.
B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-tolerant wide-area location and. Technical report, Berkeley, CA, USA, 2001.
G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of radio irregularity on wireless sensor networks. In MobiSys ’04: Proceedings of the 2nd international conference on Mobile systems, applications, and services, 2004. ACM Press, New York, pages 125–138.
G. Ziegler. Lectures on Polytopes. Springer-Verlag, Berlin 1995.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag London Limited
About this chapter
Cite this chapter
Gao, J. (2009). Geometric Routing in Wireless Sensor Networks. In: Misra, S., Woungang, I., Misra, S. (eds) Guide to Wireless Sensor Networks. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-218-4_5
Download citation
DOI: https://doi.org/10.1007/978-1-84882-218-4_5
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-84882-217-7
Online ISBN: 978-1-84882-218-4
eBook Packages: Computer ScienceComputer Science (R0)