Skip to main content

Analysis and Visualization of Relations in eLearning

  • Chapter
  • First Online:
Computational Social Network Analysis

Abstract

The popularity of eLearning systems is growing rapidly; this growth is enabled by the consecutive development in Internet and multimedia technologies. Web-based education became wide spread in the past few years. Various types of learning management systems facilitate development of Web-based courses. Users of these courses form social networks through the different activities performed by them. This chapter focuses on searching the latent social networks in eLearning systems data. These data consist of students activity records wherein latent ties among actors are embedded. The social network studied in this chapter is represented by groups of students who have similar contacts and interact in similar social circles. Different methods of data clustering analysis can be applied to these groups, and the findings show the existence of latent ties among the group members. The second part of this chapter focuses on social network visualization. Graphical representation of social network can describe its structure very efficiently. It can enable social network analysts to determine the network degree of connectivity. Analysts can easily determine individuals with a small or large amount of relationships as well as the amount of independent groups in a given network. When applied to the field of eLearning, data visualization simplifies the process of monitoring the study activities of individuals or groups, as well as the planning of educational curriculum, the evaluation of study processes, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Aalst WMP, Reijers HA, Song M (2005) Discovering social networks from event logs. Computer Supported Cooperative Work (CSCW), 14. Springer, Berlin, pp 549–593

    Google Scholar 

  2. Abonyi J, Balasz F, Abraham A (2005) Computational intelligence in data mining. Informatica 29:3–12

    Google Scholar 

  3. Adamic LA, Buyukkokten O, Adar E (2003) A social network caught in the Web. First Monday 8(6)

    Google Scholar 

  4. Adar E, Kim M (2007) SoftGUESS: Visualization and exploration of code clones in context. In: Proceedings of the 29th international conference on software engineering (ICSE’07), pp 762–766

    Google Scholar 

  5. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25:163–177

    MATH  Google Scholar 

  6. Backstrom L, Huttenlocher D, Kleinberg J, Lan X (2006) Group formation in large social networks: Membership, growth, and evolution. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data Mining. ACM, Philadelphia, PA, pp 44–54

    Google Scholar 

  7. Benoit G (2002) Data Mining. In: Chronin B (ed) Annual review of information science and technology, vol 36. American Society for Information Science and Technology, Silver Spring, pp 265–310

    Google Scholar 

  8. Berge ZL (1995) Facilitating computer conferencing: Recommendations from the field. Educ Technol 35(1):22–30

    Google Scholar 

  9. Berkhin P (2006) A survey of clustering data mining techniques. Group multidimensional data, pp 25–71

    Google Scholar 

  10. Borgatti SP. NetDraw 1.0: Network visualization software, Version 1.0.0.21. Analytic Technologies, Harvard

    Google Scholar 

  11. Bouguessa M, Dumoulin B, Wang S (2008) Identifying authoritative actors in question-answering forums: The case of Yahoo! answers. KDD 2008, pp 866–874

    Article  Google Scholar 

  12. Brusilovsky P (2003) Adaptive and intelligent Web-based educational systems. Int J Artif Intel Educ 13:159–169

    Google Scholar 

  13. Cai D, Shao Z, He X, Yan X, Han J (2005) Mining hidden community in heterogeneous social networks. In: Proceedings of the 3rd international workshop on link discovery. ACM, Chicago, IL, pp 58–65

    Google Scholar 

  14. Carrington PJ, Scott J, Wasserman S (2005) Models and methods in social network analysis. Cambridge university press, pp 57–62

    Google Scholar 

  15. Castro F, Vellido A, Nebot A, Mugica F (2007) Applying data mining techniques to e-learning problems. Stud Comput Intel (SCI) 62:183–221

    Google Scholar 

  16. Caverlee J, Webb S (2008) A large-scale study of myspace: Observations and implications for online social networks. Association for the advancement of artificial intelligence

    Google Scholar 

  17. Crandall D, et al. (2008) Feedback effects between similarity and social influence in online communities. KDD 2008, pp 160–168

    Article  MathSciNet  Google Scholar 

  18. Daradoumis T, Martines-Mones A, Xhafa F (2006) A layered framework for evaluating on-line collaborative learning interactions. Int J Hum Comput Stud 64:622–635

    Google Scholar 

  19. Doreian P, Batagelj V, Ferligoj A (2004) Positional analysis of sociomatric data. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cmabridge, pp 77–97

    Google Scholar 

  20. Downs GM, Barnard JM (2003) Reviews in computational chemistry, vol 18. Wiley-VCH

    Google Scholar 

  21. Dunham MH (2002) Data mining introductory and advanced topics. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  22. Eades P, Feng Q-W, Lin S (1997) Straight-line drawing algorithms for hierarchical graphs and clustered graphs. In: Proceedings of the syposium on graph drawing 96. Springer,London, UK, pp 113–128

    Google Scholar 

  23. Eades P, Feng Q-W (1996) Multilevel visualization of clustered graphs. In: Proceedings of the syposium on graph drawing. Springer, Berlin, Germany, pp 101–112

    Google Scholar 

  24. Eckmann J-P, Moses E, Sergi D (2004) Entropy of dialogues creates coherent structures in e-mail traffic. Proc Natl Acad Sci USA 101:14333–14337

    MATH  MathSciNet  Google Scholar 

  25. Elden L (2007) Matrix methods in data mining and pattern recognition. SIAM

    Google Scholar 

  26. Everett MG, Borgatti SP (2004) Extending centrality. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cmabridge, pp 57–76

    Google Scholar 

  27. Faloutsos C (1995) Fast searching by content in multimedia databases. IEEE Data Eng Bull 18(4):31–40

    Google Scholar 

  28. Fayyad UM, et al. (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–54

    Google Scholar 

  29. Fisher D, Dourish P (2004) Social and temporal structures in everyday collaboration. Vienna, Austria, pp 551–558

    Google Scholar 

  30. Frawley W, Piatetsky-Shapiro G, Matheus C (1992) Knowledge discovery in databases: An overview. AI Mag 213–228

    Google Scholar 

  31. Freeman LC (1979) Centrality in social networks: Conceptual clarification. Soc Networks 1:215–239

    Google Scholar 

  32. Gan G, Ma C, Wu J (2007) Data clustering: Theory, algorithms, and applications ASA-SIAM series on statistics and applied probability. SIAM, MAY

    Google Scholar 

  33. Garton L, Haythornthwaite C, Wellman B (1997) Studying online social networks. J Comput Mediat Commun 3(1)

    Google Scholar 

  34. Golub GH, van Loan CF (1996) Matrix computation. The John Hopkins University Press

    Google Scholar 

  35. Ghoniem M, Fekete JD, Castagliola P (2005) On the readability of graphs using node-link and matrix-based representations: A controlled experiment and statistical analysis. Info Vis 4(2):114–135

    Google Scholar 

  36. Granovetter M (1992) Decesion making: Alternatives to rational choice models economic action and social structure: The problem of embeddedness. SAGE, Newbury Park, CA pp 3304–33

    Google Scholar 

  37. Granovetter MS (1973) The strength of weak ties. Am J Psychol 78(6):1360–1380

    Google Scholar 

  38. Gollapudi S, Kenthapadi K, Panigrahy R (2008) Threshold phenomena in the evolution of communities in social networks. 17th International World Wide Web conference (WWW2008), Workshop on social web search and mining (swsM2008)

    Google Scholar 

  39. Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev 68:065103

    Google Scholar 

  40. Han J, Kamber M (2001) Data mining: Concepts and techniques (Morgan-Kaufman series of data management systems). Academic Press, San Diego

    Google Scholar 

  41. Hand DJ, Mannila H, Smyth P (2001) Principles of data mining (adaptive computation and machine learning). MIT

    Google Scholar 

  42. Hanneman RA, Riddle M (2005) Introduction to social network methods. Published in digital form at http://faculty.ucr.edu/ hanneman/

    Google Scholar 

  43. Henry N, Bezerianos A, Fekete J-D (2008) Improving the readability of clustered social networks using node duplication. IEEE Trans Vis Comput Graph 14(6):1317–1324

    Google Scholar 

  44. Henry N, Fekete J-D, McGuffin MJ (2007) NodeTrix: A hybrid visualization of social networks. IEEE Trans Vis Comp Graph 13(6):1302–1309

    Google Scholar 

  45. Henry N, Fekete J-D (2007) MatLink: Enhanced matrix visualization for analyzing social networks. In: Proceedings of the international conference interact

    Google Scholar 

  46. Heer J, Boyd D (2005) Vizster: Visualizing online social networks. In: Proceedings of the IEEE symposium on information visualization

    Google Scholar 

  47. Indyk P Stable distributions, pseudorandom generators, embeddings and data stream computation. JACM 53:307–323

    Google Scholar 

  48. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  49. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: A review. ACM Comput Surv 31(3):264–323

    Google Scholar 

  50. Johnson SC (1967) Hierarchical Clustering Schemes. Psychometrika 32:241–254

    Article  Google Scholar 

  51. Jolliffe I (2002) Principal component analysis. Springer

    Google Scholar 

  52. Juan AA, Daradoumis T, Faulin J, Xhafa F (2008) Developing an information system for monitoring student’s activity in online collaborative learning. International conference on complex, Inteligent and software intensive systems, pp 270–275

    Google Scholar 

  53. Kay J, Maisonneuve N, Yacef K, Zaiane OR (1999) Mining patterns of events in Students’ teamwork data. Educational data mining workshop, Taiwan, pp 1–8

    Google Scholar 

  54. Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5): 604–632

    MATH  MathSciNet  Google Scholar 

  55. Knoke D, Burt RS (1983) Prominence. In Burt RS, Minor MJ (eds) Sage Publications, pp 195–222

    Google Scholar 

  56. Knoke D, Yang S (2008) Social network analysis. Sage Publications

    Google Scholar 

  57. Korfiatis N, Poulos M, Bokos G (2006) Evaluating authoritative sources using social networks: An insight from Wikipedia. Online Info Rev 30(3):252–262

    Google Scholar 

  58. Kossinets G, Kleinberg J, Watts D (2008) The structure of information pathways in a social communication network. KDD ’08: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 435–443

    Google Scholar 

  59. Krause B, et al. (2008) Logsonomy – Social informatik Retrieval with Logdata. In: Proceedings of the 19th ACM conference on hypertext and hypermedia. Pittsburgh, PA, pp 157–166

    Google Scholar 

  60. Kumar R, Novak J, Tomkins A (2006) Structure and evolution of online social networks. Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, Philadelphia, PA, pp 611–617

    Google Scholar 

  61. Lee SH, Kim P-J, Ahn Y-Y, Jeong H (2008) Googling social interactions: Web search engine based social network construction. arXiv, 0710.3268v1

    Google Scholar 

  62. Lee SH, et al. (2007) Googling social interactions: Web search engine based social network construction. E-print, arXiv:0710.3268v1

    Google Scholar 

  63. Leskovec J, et al. (2008) Statistical properties of community structure in large social and information networks. WWW 2008, Beijing, China, pp 695–704

    Google Scholar 

  64. Leskovec J, Lang K, Dasgupta A, Mahoney M (2008) Community structure in real graphs: The “negative dimensionality” paradox. International World Wide Web conference

    Google Scholar 

  65. Liben-Nowell D, Kleinberg J (2007) The link prediction problem for social networks. J Am Soc Info Sci Technol (Wiley Periodicals) 58(7):1019–1031

    Google Scholar 

  66. Liljeros F, Edling CR, Amaral LA, Stanley HD, Aberg Y (2001) The web of human sexual contacts. Nature 411:907–908

    Article  Google Scholar 

  67. Martinovic J, Drazdilova P, Slaninova K, Snasel V (2008) Relation analysis in elearning. Comput Info Syst Ind Manage Appl CISIM ’08. 7th, pp 133–138

    Google Scholar 

  68. McGlohon M, Akoglu L, Faloutsos CH (2008) Weighted graphs and disconnected components: Patterns and a generator. KDD ’08. In: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 524–532

    Google Scholar 

  69. McPherson M, Nunes MB (2004) The role of tutors as an integral part of online learning support. Eur J Open Dist Learn

    Google Scholar 

  70. Newman MEJ (2003) Fast algorithm for detecting community structure in networks. Phys Rev E 69

    Google Scholar 

  71. Newman MEJ (2003) The structure and function of complex networks, SIAM Rev 45: 167–256

    MATH  MathSciNet  Google Scholar 

  72. Newman MEJ (2004) Co-authorship networks and patterns of scientific collaboration. Proc Natl Acad Sci USA 101:5200–5205

    Google Scholar 

  73. Newman MEJ, Girwan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69

    Google Scholar 

  74. Newman MEJ, Balthrop J, Forrest S, Williamson MM (2004) Technological networks and the spread of computer viruses. Science 304:527–529

    Google Scholar 

  75. de Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. Structural analysis in the social sciences. Cambridge University Press

    Book  Google Scholar 

  76. Nowozin S, Tsuda K, Kudo T, Bakir G (2007) Weighted substructure mining for image analysis. In: IEEE computer society conference on computer vision and patern recognition, pp 1–8

    Google Scholar 

  77. Okamoto K, Chen W, Li X (2008) Ranking of closeness centrality for large-scale social networks. Frontiers in algorithmics. Springer, Heidelberg, pp 186–195

    Google Scholar 

  78. Onnela J-P, Saramaki J, Hyvonen J, Szabo G, de Menezes AM, Kaski K, Barabasi A-L, Kertesz J (2007) Analysis of large-scale weighted network of one-to-one human communication. New J Phys 9

    Google Scholar 

  79. Opsahl T, Panzarasaa P (2009) Clustering in weighted networks. Soc Networks 31(2): 155–163

    Google Scholar 

  80. Otsuka LL, Kitsuregawa SM (2008) Query recommendation using large-scale web access logs and web page archive. In: Proceedings of the 19th international conference on database and expert system applications. Springer, Berlin/Heidelberg, pp 134–141

    Google Scholar 

  81. Pahl C, Donnelan C (2003) Data mining technology for the evaluation of web-based teaching and learning systems. In: Procceedings of the congress e-learning, Montreal, Canada

    Google Scholar 

  82. Peng W, Li T, Ma S (2005) Mining logs files for data-driven system management. ACM SIGKDD Explor Newslett 7(1) (June 2005). ACM, NY, pp 44–51

    Google Scholar 

  83. Phithakkitnukoon S, Dantu R (2008) Inferring social groups using call logs in on the move to meaningful Internet systems. OTM 2008 Workshops, LNCS 5333. Springer, Berlin/Heidelberg, pp 200–210

    Google Scholar 

  84. Pokorný J, Snášel V, Kopecký M (2005) Dokumentografické informační systémy. Vydavatelství Karolinum Praha, MFF UK Praha

    Google Scholar 

  85. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA

    Google Scholar 

  86. Ravasz E, Barabasi A-L (2003) Hierarchical organization in complex networks. Phys Rev E 67

    Google Scholar 

  87. Romero C, Ventura S (2006) Data mining in e-learning. Southampton. Wit Press, UK

    Book  Google Scholar 

  88. Romero C, Ventura S, Garcia E (2007) Data mining in course management systems: Moodle case study and tutorial. Comput Educ

    Google Scholar 

  89. Rutkowski L (2008) Computational intelligence. Springer

    Google Scholar 

  90. Sabidussi G (1966) The centrality index of a graph. Psychometrika (Springer) 31(4):581–603

    MATH  MathSciNet  Google Scholar 

  91. Saha B, Getoor L (2008) Group proximity for recommending groups in online social networks. SNA-KDD

    Google Scholar 

  92. Salton G, Buckley C (1988) Term-weighting approaches in automatic text retrieval. Info Proces Manage 513–523

    Google Scholar 

  93. Saigo H, Kadowadi T, Tsuda K (2006) A linear programming approach for molecular QSAR analysis. In: International workshop on mining and learning with graphs, pp 85–96

    Google Scholar 

  94. Saigo H, Kramer N, Tsuda K (2008) Partial least squares regression for graph mining, 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 578–586

    Google Scholar 

  95. Schommer CH (2008) An unified definition of data mining. arXiv:0809.2696v1

    Google Scholar 

  96. Shepherd C (2002) In search of the perfect e-tutor

    Google Scholar 

  97. Snijders TAB (2004) Models for longitudinal network data. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cmabridge, pp 215–247

    Google Scholar 

  98. Sun J, Xie Y, Zhang H, Faloutsos CH (2007) Less is more: Compact matrix decomposition for large sparse graphs. SIAM

    Google Scholar 

  99. Ting I-H (2008) Web mining techniques for on-line social networks analysis. Serv Syst Serv Manage 1–5

    Google Scholar 

  100. Tsuda K, Kudo T (2006) Clustering graphs by weighted substructure mining. 23rd international conference on machine learning, pp 953–960

    Google Scholar 

  101. Tsuda K, Kurihara K (2008) Graph mining with variational dirichlet process mixture models. In: SIAM conference on data mining, pp 432–442

    Google Scholar 

  102. Tsudo K, Maeda E, Matsumoto Y (2005) An application of boosting to graph classification. Adv Neural Info Proces Syst 17:729–736

    Google Scholar 

  103. URL: http://www.analytictech.com (04-12-2009)

    Google Scholar 

  104. URL: http://sp.ask.com/en/docs/iq/iq.shtml (04-12-2009)

    Google Scholar 

  105. URL: http://cneurocvs.rmki.kfki.hu/igraph (04-12-2009)

    Google Scholar 

  106. URL: http://delicious.com (04-12-2009)

    Google Scholar 

  107. URL: http://www.flickr.com (04-12-2009)

    Google Scholar 

  108. URL: http://www.google.com (04-12-2009)

    Google Scholar 

  109. URL: http://www.google.com/trends (04-12-2009)

    Google Scholar 

  110. URL: http://www.graphviz.org (04-12-2009)

    Google Scholar 

  111. URL: http://jung.sourceforge.net (04-12-2009)

    Google Scholar 

  112. URL: http://www.livejournal.com (04-12-2009)

    Google Scholar 

  113. URL: http://www.netminer.com (04-12-2009)

    Google Scholar 

  114. URL: http://www.myspace.com (04-12-2009)

    Google Scholar 

  115. URL: http://www.orgnet.com (04-12-2009)

    Google Scholar 

  116. URL: http://www.cs.umd.edu/hcil/treemap (04-12-2009)

    Google Scholar 

  117. URL: http://www.youtube.com (04-12-2009)

    Google Scholar 

  118. Yang SJH, Chen IYL, Kinshuk N-S (2007) Enhancing the quality of e-learning in virtual learning communities by finding quality learning content and trustworthy collaborators. Educ Technol Soc 10(2):84–95

    Google Scholar 

  119. Wachter RM, Gupta JND, Quaddus MA (2000) It takes a village: Virtual communities in supporting of education. Int J Info Manag 20(6):473–489

    Google Scholar 

  120. Wakita K, Tsurumi T (2007) Finding community structure in mega-scale social networks. arXiv, cs/0702048v1

    Google Scholar 

  121. Wang W, Weng J, Su J, Tseng S (2004) Learning portfolio analysis and mining in SCORM compliant environment. In: Proceedings of ASEE/IEEE frontiers in education conference, Savannah, Georgia, pp 17–24

    Google Scholar 

  122. Wasko MM, Faraj S (2005) Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quart 29(1):35–57

    Google Scholar 

  123. Wasserman S, Faust K (1994) Social network analysis: Methods and applications structural analysis in the social sciences. Cambridge University Press, Cambridge

    Book  Google Scholar 

  124. Wasserman S, Faus K (1994) Social network analysis: Methods and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  125. Wasserman S, Robins G (2004) An introduction to random graphs, dependence graphs, and p  ∗ . In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cambridge, pp 148–161

    Google Scholar 

  126. Wellman B (1999) From little boxes to loosely bounded networks : The privatization and domestication of community. In: Abu Lughod JL (ed) Sociology for the twenty-first century. University of Chicago Press, pp 94–114

    Google Scholar 

  127. Wills GJ (1999) NicheWorks – Interactive visualization of very large graphs. J Comput Graph Statist pp 190–212

    Google Scholar 

  128. Zaiane O, Luo J (2001) Web usage mining for a better web-based learning environment. In: Procceedings of conference of advanced technology for education, Banff, Alberta, pp 60–64

    Google Scholar 

  129. Zhang J, Ackerman MS, Adamic L (2007) Expertise networks in online communities: Structure and algorithms. In: Proceedings of the 16th ACM international World Wide Web conference (WWW’07), pp 221–230

    Google Scholar 

  130. Zorilla ME, Menasalvas E, Marin D, Mora E, Segovia J. (2005) Web usage mining project for improving web-based learning sites. In: Web mining workshop, Cataluna, pp 1–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamila Obadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Dráždilová, P., Obadi, G., Slaninová, K., Martinovič, J., Snášel, V. (2010). Analysis and Visualization of Relations in eLearning. In: Abraham, A., Hassanien, AE., Sná¿el, V. (eds) Computational Social Network Analysis. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-229-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-229-0_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-228-3

  • Online ISBN: 978-1-84882-229-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics