Skip to main content

A Review of Tensors and Tensor Signal Processing

  • Chapter
Tensors in Image Processing and Computer Vision

Abstract

Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Raffel, C. Willert, and J. Kompenhans, Particle Image Velocimetry. A Practical Guide, Springer Verlag, 1998.

    Google Scholar 

  2. J.C.R. Hunt, “Vorticity and vortex dynamics in complex turbulent flows,” in Transactions Canadian Society for Mechanical Engineering (ISSN 0315-8977), 1987, vol. 11, pp. 21–35.

    Google Scholar 

  3. R. Haimes and D. Kenwright, “The velocity gradient tensor and fluid feature extraction,” in Proc. AIAA 14th Computational Fluid Dynamics Conference, 1999.

    Google Scholar 

  4. P. Basser, J. Mattiello, and D. Le Bihan, “MR diffusion tensor spectroscopy and imaging,” Biophysical Journal, vol. 66, pp. 259–267, 1994.

    Article  Google Scholar 

  5. P.C. Sundgren, Q. Dong, D. Gómez-Hassan, S.K. Mukherji, P. Maly, and Welsh R., “Diffusion tensor imaging of the brain: review of clinical applications,” Neuroradiology, vol. 46, pp. 339–350, 2004.

    Article  Google Scholar 

  6. A. Einsten, “Ber die von der molekularkinetischen theorie der wärme gefordete bewegung von in ruhenden flüssigkeiten suspendierten teilchen,” Annalen der Physik, , vol. 17, pp. 549–560, 1905.

    Article  Google Scholar 

  7. E.O. Stejskal and T. E. Tanner, “Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient,” Journal of Chemical Physics, no. 42, pp. 288–292, 1965.

    Google Scholar 

  8. D LeBihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, “MR imaging of intravocel incoherents motions: application to diffusion and perfusion in neurological disorders,” Radiology, vol. 161, pp. 401–407, 1986.

    Google Scholar 

  9. C. Pierpaoli and P.J. Basser, “Toward a quantitative assesment of diffusion anisotropy,” Magnetic Resonance in Medicine, vol. 36.

    Google Scholar 

  10. C.F. Westin, S. E. Maier, H. Mamata, F.A. Jolesz, and R. Kikinis, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, pp. 93–108, 2002.

    Article  Google Scholar 

  11. J. Weickert and H. Hagen, Eds., Visualization and Processing of Tensor Fields, part II. Diffusion Tensor Imaging, pp. 81–187, Springer, 2006.

    Google Scholar 

  12. Kindlmann G., “Superquadrics tensor glyphs,” in Proceedings IEEE TVCG/EG Symposium on Visualization, 2004, May 2004.

    Google Scholar 

  13. C.R. Rao, “Information and accuracy attainable in the estimation of statistical parameters,” Bull. Calcutta Math. Soc., vol. 37, pp. 81–91, 1945.

    MATH  MathSciNet  Google Scholar 

  14. J. Burbea and C.R. Rao, “Entropy differential metric, distance and divergence measures in probability spaces: A unified approach,” J. Multivariate Anal., vol. 12, pp. 575–596, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  15. L.T. Skovgaard, “A Riemannian geometry of the multivariate normal model,” Tech. Rep. 81/3, Statistical Research Unit, Danish Medical Research Council, Danish Social Science Research Council, 1981.

    Google Scholar 

  16. M. Moakher, “A differential geometric approach to the geometric mean of symmetric positive-definite matrices,” SIAM J. Matrix Anal. Appl., vol. 26, no. 3, pp. 735–747, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. Atkinson and A.F.S. Mitchell, “Rao’s distance measure,” Sankhya: The Indian Journal of Stats., vol. 43, no. A, pp. 345–365, 1981.

    MATH  MathSciNet  Google Scholar 

  18. W. Förstner and B. Moonen, “A metric for covariance matrices,” Tech. Rep., Stuttgart University, Dept. of Geodesy and Geoinformatics, 1999.

    Google Scholar 

  19. D.F. Scollan, A. Holmes, R. Winslow, and J. Forder, “Histological validation of myocardial microstructure obtainde form diffusion tensor magnetic resonance imaging,” American Journal of Physiology, no. 275, pp. 2308–2318, 1998.

    Google Scholar 

  20. E. W. Hsu and Setton L. A., “Diffusion tensor microscopy of the intervertebral disc annulus fibrosus,” Magnetic Resonance in Medicine, no. 41, pp. 992–999, 1999.

    Google Scholar 

  21. P. Hagmann, L. Jonasson, P. Maeder, J. Thiran, V. Wedeen, and R. Meuli, ,“Understanding diffusion MRI imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond,” Radiographics, pp. S205–S223.

    Google Scholar 

  22. H. Jiang, P.C. Van Zijl, J. Kim, G.D. Pearlson, and S. Mori, “DTIstudio: Resource program for diffusion tensor computation and fiber bundle tracking,” Comput. Methods Programs Biomed., vol. 81, no. 2, pp. 106–116, 2006.

    Article  Google Scholar 

  23. S. Mori and P.C.M. van Zijl, “Fiber tracking: principles and strategies -a technical review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 468–480, 2002.

    Article  Google Scholar 

  24. T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony, R. C. Mckinstry, H. Burton, and M. E. Raichle, “Tracking neuronal fiber pathways in the living human brain,” in Proc. Natl. Acad. Sci. USA, August 1999, pp. 10422–10427.

    Google Scholar 

  25. P.J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo fiber tractography using DT-MRI data,” Mag. Res. in Med., vol. 44, pp. 625–632, 2000.

    Article  Google Scholar 

  26. M. Lazar, D.M.Weinstein, J.S.Tsuruda, K.M.Hasan, K. Arfanakis, M.E. Meyerand, B. Badie, H.A.Rowley, V.Haughton, A. Field, and A. L.Alexander, “White matter tractography using diffusion tensor deflection,” Human Brain Mapping, vol. 18, pp. 306–321, 2003.

    Article  Google Scholar 

  27. P. Hagmann, J.-P. Thiran, L. Jonasson, P. Vandergheynst, S. Clarke, P. Maeder, and R. Meulib, “DTI mapping of human brain connectivity: Statistical fibre tracking and virtual dissection,” NeuroImage, vol. 19, pp. 545–554, 2003.

    Article  Google Scholar 

  28. S. Mori, B.J. Crain, V.P. Chacko, and P.C. van Zijl., “Three dimensional tracking of axonal projections in th brain by magnetic resonance imaging,” Ann. Neurol., vol. 45, no. 2, pp. 265–269, 1999.

    Article  Google Scholar 

  29. C. Pierpaoli, P. Jezzard, PJ. Basser, A. Barnett, and G. Di Chiro, “Diffusion tensor MR imaging of the human brain,” Radiology, vol. 201.

    Google Scholar 

  30. E. von dem Hagen and R. Henkelman, “Orientational diffusion reflects fiber structure within a voxel,” Magn. Reson. Med., vol. 48.

    Google Scholar 

  31. D. Jones, “Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI,” Magn. Reson. Med., vol. 49.

    Google Scholar 

  32. D. Jones, A. Simmons, S. Williams, and M. Horsfield, ,” .

    Google Scholar 

  33. S. Mori, B. Crain, V. Chacko, and P. Van Zijl, “Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging,” Ann. Neurol., vol. 45.

    Google Scholar 

  34. C. Tench, P. Morgan, M. Wilson, and L. Blumhardt, “White matter mapping using diffusion tensor MRI,” Magn. Reson. Med., vol. 47.

    Google Scholar 

  35. J. Ophir, I. Céspedes, B. Garra, H. Ponnekanti, Y. Huang, and N. Maklad, “Elastography: A quantitative method for imaging the elasticity of biological tissues,” Ultrasound Imaging, vol. 13, pp. 111-134, 1991.

    Article  Google Scholar 

  36. B.S. Garra, I. Céspedes, J. Ophir, S. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen, “Elastography of breast lesions: initial clinical results,” Radiology, vol. 202, pp. 79-86, 1997.

    Google Scholar 

  37. R. L Maurice, M. Daronat, J. Ohayon, E. Stoyanova1, F. S. Foster, and G. Cloutier, “Non-invasive high-frequency vascular ultrasound elastography,” Phys. Med. Biol., no. 50, pp. 1611–1628, 2005.

    Google Scholar 

  38. D. Sosa-Cabrera, M.A. Rodriguez-Florido, E. Suarez-Santana, and J. Ruiz-Alzola, Tensor Elastography: A New Approach for Visualizing the Elastic Properties of the Tissue, 2006.

    Google Scholar 

  39. A. Neeman, B. Jeremic, and A. Pang, “Visualizing tensor fields in geomechanics,” in IEEE Visualization, 2005, pp. 329–343.

    Google Scholar 

  40. B. Wuensche, “The visualization of 3d stress and strain tensor fields,” in Proc. of the 3rd New Zealand Comp. Science Research Student Conf., Apr. 1999, vol. 3, pp. 109–116.

    Google Scholar 

  41. P. Selskog, E. Heiberg, T. Ebbers, L. Wigstrom, and M. Karlsson, “Kinematics of the heart: strain-rate imaging from time-resolved three-dimensional phase contrast MRI,” IEEE Trans. Med. Imaging, vol. 21, no. 1, pp. 1105-1109, 2002.

    Article  Google Scholar 

  42. D. Sosa-Cabrera, Novel Processing Schemes and Visualization Methods for Elasticity Imaging, Phd dissertation, University of Las Palmas de GC, 2008.

    Google Scholar 

  43. M.C. Morrone and R.A. Owens, “Feature detection from local energy,” Pattern Recognition Letters, vol. 6, pp. 303–313, 1987.

    Article  Google Scholar 

  44. H. Knutsson, “Representing local structure using tensors,” in 6th Scandinavian Conference on Image Analysis. Oulu, Finland, 1989, pp. 244–251.

    Google Scholar 

  45. U. Köthe, “Integrated edge and junction detection with the boundary tensor,” in 9th Intl. Conf. on Computer Vision, Nice, 2003, IEEE Computer Society, vol. 1, pp. 424–431.

    Google Scholar 

  46. C.-F. Westin, S.E. Maier, H. Mamata, A. Nabavi, F.-A. Jolesz, and R. Kikinis, “Processing and visualization for diffusion tensor MRI,” Medical Image Analysis, vol. 6, no. 2, pp. 93–108, Jun. 2002.

    Article  Google Scholar 

  47. J. Bigün and G.-H. Granlund, “Optimal orientation detection of linear symmetry.,” in IEEE First International Conference on Computer Vision, London, UK, Jun. 1987, pp. 433–438.

    Google Scholar 

  48. W. Förstner and E. Gülch, “A fast operator for detection and precise location of distinct points, corners and centres of circular features.,” in Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, June 1987, pp. 281–305.

    Google Scholar 

  49. M. Kass and A. Witkin, “Analyzing oriented patterns,” Computer Vision Graphics and Image Processing, vol. 37, pp. 362–385, 1987.

    Article  Google Scholar 

  50. R. San Jose, Local Structure Tensor for Multidimensional Signal Processing. Applications to Medical Image Analysis, Ph.D. thesis, Universidad de Valladolid, E.T.S. Ingenieros de Telecomunicación, February 2005.

    Google Scholar 

  51. A.-R. Rao and B.-G. Schunck, “Computing oriented texture fields”, CVGIP: Graphical Models and Image Processing, vol. 53, no. 2, pp. 157–185, 1991.

    Article  Google Scholar 

  52. R. Mester and M. Mühlich, “Improving motion and orientation estimation using an equilibrated total least squares approach,” in Proc. IEEE International Conference on Image Processing (ICIP 2001), Thessaloniki, Greece, October 2001, pp. 640–643.

    Google Scholar 

  53. H. Knutsson and M. Andersson, “What’s so good about quadrature filters?”, in 2003 IEEE International Conference on Image Processing, 2003.

    Google Scholar 

  54. H. Knutsson and M. Andersson, “Loglets: Generalized quadrature and phase for local spatio-temporal structure estimation,” in Proc. of SCIA03. LNCS., J. Bigün and T. Gustavsson, Eds., 2003, vol. 2749, pp. 741–748, Springer.

    Google Scholar 

  55. B. Rieger and L. Vlieet, “A systematic approach to nd orientation representation,” Image and Vision Computing, vol. 22, no. 6, pp. 453–459, 2004.

    Article  Google Scholar 

  56. J. Ruiz-Alzola, R. Kikinis, and C.-F. Westin, “Detection of point landmarks in multidimensional tensor data,” Signal Processing, vol. 81, no. 10, Oct. 2001.

    Google Scholar 

  57. G.-H. Granlund and H. Knutsson, Signal Processing for Computer Vision, Kluwer Academic Publishers, 1995.

    Google Scholar 

  58. T. Brox, J. Weickert, B. Burgeth, and P. Mrázek, “Nonlinear structure tensors,” Image and Vision Computing, vol. 24, no. 1, pp. 41–55, January 2006.

    Article  Google Scholar 

  59. J. Weickert and T. Brox, “Diffusion and regularization of vector- and matrix-valued images,” Inverse Problems, Image Analysis and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 251–268, 2002.

    MathSciNet  Google Scholar 

  60. G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Applied Mathematical Sciences, vol. 147. Springer-Verlang, 2002.

    MATH  Google Scholar 

  61. J. Weickert, A Review of Nonlinear Diffusion Filtering, vol. 1252 of Lecture Notes in Computer Science - Scale Space Theory in Computer Science, Springer, Berlin, 1997.

    Google Scholar 

  62. J. Weickert, “Coherence enhancing diffusion filtering,” Int. J. of Computer Vision, vol. 31, pp. 111–127, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cammoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Cammoun, L. et al. (2009). A Review of Tensors and Tensor Signal Processing. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-299-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-299-3_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-298-6

  • Online ISBN: 978-1-84882-299-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics