Skip to main content

DT-MRI Connectivity and/or Tractography?: Two New Algorithms

  • Chapter
Tensors in Image Processing and Computer Vision

Part of the book series: Advances in Pattern Recognition ((ACVPR))

  • 2821 Accesses

Abstract

Abstract Diffusion Tensor MRI (DTI) is a special MR imaging technique where the second order symmetric diffusion tensors that are correlated with the underlying fi-brous structure (eg. the nerves in brain), are computed based on DiffusionWeighted MR Images (DWI). DTI is the only in vivo imaging technique that provides information about the network of nerves in brain. The computed tensors describe the local diffusion pattern of water molecules via a 3D Gaussian distribution in space. The most common analysis and visualization technique is tractography, which is a numerical integration of the principal diffusion direction (PDD) that attempts to reconstruct fibers as streamlines. Despite its simplicity and ease of interpretation, tractography algorithms suffer from several drawbacks mainly due to ignoring the information in the underlying spatial distribution but using the PDD only. An alternative to tractography is connectivity which aims at computing probabilistic connectivity maps based on the above mentioned 3D Gaussian distribution as described by the DTI data. However, the computational cost is high and the resulting maps are usually hard to visualize and interpret. This chapter discusses these two approaches and introduces two new tractography techniques, namely the Lattice-of-Springs (LoS) method that exploits the connectivity approach and the Split & Merge Tractography (SMT) that attempts to combine the advantages of tractography and connectivity.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-84882-299-3_22

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stejskal E.O., Tanner J.E. (1965) Spin diffusion measurements:spin echoes in the presence of a time dependent field gradient. J Chem Phys 42:288-292.

    Article  Google Scholar 

  2. Le Bihan D. (1995) Diffusion, perfusion and functional magnetic resonance imaging. J Mal Vasc 20:203-214.

    Google Scholar 

  3. Moseley M.E., Cohen Y., Mintorovitch J. et al. (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 14:330-346.

    Article  Google Scholar 

  4. Lansberg M.G., Norbash A.M., Marks M.P. et al. (2000) Advantages of adding diffusion-weighted magnetic resonance imaging to conventional magnetic resonance imaging for evaluating acute stroke. Arch Neurol 57:1311-1316.

    Article  Google Scholar 

  5. Guo A.C., Provenzale J.M., Cruz L.C. et al. (2001) Cerebral abscesses: investigation using apparent diffusion coefficient maps. Neuroradiology 43:370-374.

    Article  Google Scholar 

  6. Young G.S., Geschwind M.D., Fischbein N.J. et al. (2005) Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. Am J Neuroradiol 26:1551-1562.

    Google Scholar 

  7. Moseley M.E., Kucharczyk J., Asgari H.S. et al. (1991) Anisotropy in diffusion-weighted MRI. Magn Reson Med 19:321-326.

    Article  Google Scholar 

  8. Bammer R., Fazekas F. (2002) Diffusion imaging in multiple sclerosi. Neuroimaging Clin N Am 12:71-106.

    Article  Google Scholar 

  9. Ellis C.M., Simmons A., Jones D.K. et al. (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051-1058

    Google Scholar 

  10. Barnea-Goraly N., Eliez S., Hedeus M. et al. (2003) White matter tract alterations in fragile X syndrome: preliminary evidence from diffusion tensor imaging. American Journal of Medical Genetics. Part B, Neuropsychiatric genetics 118:81-88.

    Google Scholar 

  11. Barnea-Goraly N., Kwon H., Menon V. et al. (2004) White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biological psychiatry 55:323-326.

    Article  Google Scholar 

  12. Barnea-Goraly N., Eliez S., Menon V. et al. (2005) Arithmetic ability and parietal alterations: a diffusion tensor imaging study in velocardiofacial syndrome. Brain Res Cogn Brain Res. 25:735-740.

    Article  Google Scholar 

  13. Pribam K., MacLean P. (1953) Neuronographic analysis of medial and basal cerebral corte. J Neurophysiol 16:324-340.

    Google Scholar 

  14. Whitlock D.G., Nauta W.J.H. (1956) Subcortical projections from temporal neocortex in Macaca mulatto. J Comp Neurol 106:183-212.

    Article  Google Scholar 

  15. Turner B.H., Mishkin M., Knapp M. (1980) Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol 191:515-543.

    Article  Google Scholar 

  16. Yagishita A., Nakano I., Oda M. et al. (1994) Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 191:455-460.

    Google Scholar 

  17. Basser P.J. (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8:333-344.

    Article  Google Scholar 

  18. Basser P.J., Mattiello J., LeBihan D. (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247-254.

    Article  Google Scholar 

  19. Basser P.J., Pierpaoli C. (1996) Microstructural and physiological features of tissues elucidated by quantitative diffusion tensor MRI. J Magn Reson B 111:209-219.

    Article  Google Scholar 

  20. Basser P.J., Pajevic S., Pierpaoli C. et al. (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625-632.

    Article  Google Scholar 

  21. Conturo T.E., Lori N.F., Cull T.S. et al. (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422-10427.

    Article  Google Scholar 

  22. Jones D.K., Simmons A., Williams S.C. et al. (1999) Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 42:37-41

    Article  Google Scholar 

  23. Liu C., Bammmer R., Acar B. et al (2004) Characterizing non-Gaussian diffusion by using generalized diffusion tensors. Magnetic Resonance in Medicine 51:924-937

    Article  Google Scholar 

  24. Tench C.R., Morgan P.S., Wilson M. et al. (2002) White matter mapping using diffusion tensor MRI. Magnetic Resonance in Medicine 47:967-972

    Article  Google Scholar 

  25. Behrens T.E., Johansen-Berg H., Woolrich M.W., et al (2003) Non-invasive mapping of connections between human Thalamus and Cortex using diffusion imaging. Nature Neuroscience 6:750-757

    Article  Google Scholar 

  26. Bjornemo M., Brun A., Kikinis R. et al (2002) Regularized stochastic white matter tractography using diffusion tensor MRI. In: Lecture Notes in Computer Science, 2488:435-442, Springer-Verlag (Proceedings of MICCAI 2002, Tokyo, Japan)

    Google Scholar 

  27. Friman O., Westin C.F. (2005) Uncertainty in white matter fiber tractography In: Lecture Notes in Computer Science, 3749:107-114, Springer-Verlag (Proceedings of MICCAI 2005, Palm Springs, CA, USA)

    Google Scholar 

  28. Hagmann P., Thiran J.P., Jonasson L. et al (2003) DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection. Neuroimage 19:545-554

    Article  Google Scholar 

  29. Lazar M, Alexander A.L. (2002) White matter tractography using random vector (RAVE) perturbation. In: Proceedings of ISMRM Annual Meeting, Honolulu, HI, USA.

    Google Scholar 

  30. Parker G.J., Haroon H.A., Wheeler-Kingshott C.A. (2003) A Framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. Journal of Magnetic Resonance Imaging 18:242-254.

    Article  Google Scholar 

  31. Behrens T.E., Berg H.J., Jbabdi S. et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: What Can We Gain? Neuroimage 34:144-155

    Article  Google Scholar 

  32. Jbabdi S., Woolrich M.W., Andersson J.L. et al (2007) A bayesian framework for global tractography. Neuroimage 37:116-129

    Article  Google Scholar 

  33. Sherbondy, A., Dougherty R. et al. (2008). ConTrack: Finding the most likely pathways between brain regions using diffusion tractography. Journal Of Vision 8:1-16

    Google Scholar 

  34. Koch M.A., Norris D.G., Hund-Georgiadis M. (2002) An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16:241-250

    Article  Google Scholar 

  35. Hagmann P., Thiran J.P., Vandergheynst P. et al (2000) Statistical fiber Tracking on DT-MRI Data as a Potential Tool for Morphological Brain Studies. ISMRM Workshop on Diffusion MRI: Biophysical Issues

    Google Scholar 

  36. Chung M.K., Lazar M., Alexander A.L. et al (2003) Probabilistic connectivity measure in diffusion tensor imaging via anisotropic kernel smoothing. Technical Report No:1081, University of Wisconsin

    Google Scholar 

  37. Lenglet C., Deriche R. , Faugeras O. (2003) Diffusion tensor magnetic resonance imaging: brain connectivity mapping. Technical Report No: 4983, INRIA, Sophia-Antipolis, France

    Google Scholar 

  38. Lenglet, C., M. Rousson, et al. (2006) DTI segmentation by statistical surface evolution. IEEE Transactions on Medical Imaging 25(6):685

    Article  MathSciNet  Google Scholar 

  39. Bozkaya U., Acar B. (2007) SMT: split & merge fiber tractography for DT-MRI. In: Lecture Notes in Computer Science, 4792:153-160, Springer (Proceedings of MICCAI 2007, Brisbane, Australia)

    Google Scholar 

  40. Bozkaya U., Acar B. (2006) SMT: mplit/merge fiber tractography for MR-DTI. In: Proceedings of ESMRMB 2006, Warsaw, Poland.

    Google Scholar 

  41. Yörük E., Acar B., Bammer R. (2005) A physical model for MR-DTI based connectivity map computation. In: Lecture Notes in Computer Science, 3749/1:213-220, Springer (Proceedings of MICCAI 2005, Palm Springs, CA, USA)

    Google Scholar 

  42. Bozkaya U (2006) SMT: split/merge fiber tractography for MR-DTI. M.S. Thesis, Boğiçi University, Biomedical Engineering Institute, Istanbul, Turkey

    Google Scholar 

  43. Lazar M, Alexander A.L. (2005) Bootstrap white matter tractography (BOOT-TRAC). Neuroimage 24:524-532.

    Article  Google Scholar 

  44. Chib S., Greenberg E. (1995) Understanding the Metropolis-Hastings algorithm. The American Statistician 49:327-335

    Article  Google Scholar 

  45. Sherbondy A., Akers D., Mackenzie R. et al (2005) Exploring connectivity of the brain’s white matter with dynamic queries. IEEE Trans. Vis. Comput. Graph. 11:419-430.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Acar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Acar, B., Yörük, E. (2009). DT-MRI Connectivity and/or Tractography?: Two New Algorithms. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-299-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-299-3_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-298-6

  • Online ISBN: 978-1-84882-299-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics