Abstract
Tensor fields are important in digital imaging and computer vision. Hence there is a demand for morphological operations to perform e.g. shape analysis, segmentation or enhancement procedures. Recently, fundamental morphological concepts have been transferred to the setting of fields of symmetric positive definite matrices, which are symmetric rank two tensors. This has been achieved by a matrix-valued extension of the nonlinear morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images. Having these two basic operations at our disposal, more advanced morphological operators such as top hats or morphological derivatives for matrix fields with symmetric, positive semidefinite matrices can be constructed. The approach realises a proper coupling of the matrix channels rather than treating them independently. However, from the algorithmic side the usual scalar morphological PDEs are transport equations that require special upwind-schemes or novel high-accuracy predictor-corrector approaches for their adequate numerical treatment. In this chapter we propose the non-trivial extension of these schemes to the matrix-valued setting by exploiting the special algebraic structure available for symmetric matrices. Furthermore we compare the performance and juxtapose the results of these novel matrix-valued high-resolution-type (HRT) numerical schemes by considering top hats and morphological derivatives applied to artificial and real world data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Alvarez and L. Mazorra. Signal and image restoration using shock filters and anisotropic diffusion. SIAM Journal on Numerical Analysis, 31:590–605, 1994.
A. Barvinok. A Course in Convexity, volume 54 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 2002.
P. J. Basser, J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66:259–267, 1994.
J. Bigün, G. H. Granlund, and J. Wiklund. Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8):775–790, August 1991.
J. P. Boris and D. L. Book. Flux corrected transport. I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 11(1):38–69, 1973.
J. P. Boris and D. L. Book. Flux corrected transport. III. Minimal error FCT algorithms. Journal of Computational Physics, 20:397–431, 1976.
J. P. Boris, D. L. Book, and K. Hain. Flux corrected transport. II. Generalizations of the method. Journal of Computational Physics, 18:248–283, 1975.
M. Breuß and J. Weickert. A shock-capturing algorithm for the differential equations of dilation and erosion. Journal of Mathematical Imaging and Vision, 25(2):187–201, September 2006.
M. Breuß and M. Welk. Staircasing in semidiscrete stabilised inverse diffusion algorithms. Journal of Computational and Applied Mathematics, 206(1):520–533, 2007.
B. Burgeth, A. Bruhn, S. Didas, J. Weickert, and M. Welk. Morphology for tensor data: Ordering versus PDE-based approach. Image and Vision Computing, 25(4):496–511, 2007.
B. Burgeth, A. Bruhn, N. Papenberg, M. Welk, and J. Weickert. Mathematical morphology for matrix fields induced by the Loewner ordering in higher dimensions. Signal Processing, 87(2):277–290, 2007.
B. Burgeth, A. Bruhn, N. Papenberg, M. Welk, and J. Weickert. Mathematical morphology for tensor data induced by the Loewner ordering in higher dimensions. Signal Processing, 87(2):277–290, February 2007.
B. Burgeth, S. Didas, L. Florack, and J. Weickert. A generic approach to diffusion filtering of matrix-fields. Computing, 81:179–197, 2007.
B. Burgeth, S. Didas, L. Florack, and J. Weickert. A generic approach to the filtering of matrix fields with singular PDEs. In F. Sgallari, F. Murli, and N. Paragios, editors, Scale Space and Variational Methods in Computer Vision, volume 4485 of Lecture Notes in Computer Science, pages 556–567. Springer, Berlin, 2007.
B. Burgeth, N. Papenberg, A. Bruhn, M. Welk, C. Feddern, and J. Weickert. Morphology for higher-dimensional tensor data via Loewner ordering. In C. Ronse, L. Najman, and E. Decencière, editors, Mathematical Morphology: 40 Years On, volume 30 of Computational Imaging and Vision, pages 407–418. Springer, Dordrecht, 2005.
L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, USA 1998.
S. J. Farlow. Partial Differential Equations for Scientists and Engineers. Dover, New York, 1993.
W. Förstner and E. Gülch. A fast operator for detection and precise location of distinct points, corners and centres of circular features. In Proceedings of the ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pages 281–305, Interlaken, Switzerland, June 1987.
B. Gärtner. http://www.inf.ethz.ch/personal/gaertner. 2005.
G. Gilboa, N. A. Sochen, and Y. Y. Zeevi. Regularized shock filters and complex diffusion. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Computer Vision – ECCV 2002, volume 2350 of Lecture Notes in Computer Science, pages 399–413. Springer, Berlin, 2002.
J. Goutsias, H. J. A. M. Heijmans, and K. Sivakumar. Morphological operators for image sequences. Computer Vision and Image Understanding, 62:326–346, 1995.
J. Goutsias, L. Vincent, and D. S. Bloomberg, editors. Mathematical Morphology and its Applications to Image and Signal Processing, volume 18 of Computational Imaging and Vision. Kluwer, Dordrecht, 2000.
G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer, Dordrecht, 1995.
F. Guichard and J.-M. Morel. A note on two classical enhancement filters and their associated PDE’s. International Journal of Computer Vision, 52(2/3):153–160, 2003.
C. G. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the Fourth Alvey Vision Conference, pages 147–152, Manchester, UK, August 1988.
H. J. A. M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.
H. J. A. M. Heijmans and J. B. T. M. Roerdink, editors. Mathematical Morphology and its Applications to Image and Signal Processing, volume 12 of Computational Imaging and Vision. Kluwer, Dordrecht, 1998.
J.-B. Hiriart-Urruty and C. Lemarechal. Fundamentals of Convex Analysis. Springer, Heidelberg, 2001.
R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, UK, 1990.
H. P. Kramer and J. B. Bruckner. Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognition, 7:53–58, 1975.
R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK, 2002.
G. Louverdis, M. I. Vardavoulia, I. Andreadis, and P. Tsalides. A new approach to morphological color image processing. Pattern Recognition, 35:1733–1741, 2002.
G. Matheron. Eléments pour une théorie des milieux poreux. Masson, Paris, 1967.
G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975.
S. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, volume 153 of Applied Mathematical Sciences. Springer, New York, 2002.
S. Osher and L. Rudin. Shocks and other nonlinear filtering applied to image processing. In A. G. Tescher, editor, Applications of Digital Image Processing XIV, volume 1567 of Proceedings of SPIE, pages 414–431. SPIE Press, Bellingham, 1991.
S. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 27:919–940, 1990.
S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79:12–49, 1988.
C. Pierpaoli, P. Jezzard, P. J. Basser, A. Barnett, and G. Di Chiro. Diffusion tensor MR imaging of the human brain. Radiology, 201(3):637–648, December 1996.
A. R. Rao and B. G. Schunck. Computing oriented texture fields. CVGIP: Graphical Models and Image Processing, 53:157–185, 1991.
L. Remaki and M. Cheriet. Numerical schemes of shock filter models for image enhancement and restoration. Journal of Mathematical Imaging and Vision, 18(2):153–160, March 2003.
E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis, 29:867–884, 1992.
G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge, UK, 2001.
G. Sapiro, R. Kimmel, D. Shaked, B. B. Kimia, and A. M. Bruckstein. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26:1363–1372, 1993.
J. G. M. Schavemaker, M. J. T. Reinders, and R. van den Boomgaard. Image sharpening by morphological filtering. In Proceedings of the 1997 IEEE Workshop on Nonlinear Signal and Image Processing, Mackinac Island, MI, USA, September 1997. www.ecn.purdue.edu/NSIP/.
J. Serra. Echantillonnage et estimation des phénomènes de transition minier. PhD thesis, University of Nancy, France, 1967.
J. Serra. Image Analysis and Mathematical Morphology, volume 1. Academic Press, London, 1982.
J. Serra. Image Analysis and Mathematical Morphology, volume 2. Academic Press, London, 1988.
J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, UK, second edition, 1999. Paperback edition.
K. Siddiqi, B. B. Kimia, and C.-W. Shu. Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution. Graphical Models and Image Processing, 59:278–301, 1997.
P. Soille. Morphological Image Analysis. Springer, Berlin, second edition, 2003.
P. Stoll, C.-W. Shu, and B. B. Kimia. Shock-capturing numerical methods for viscosity solutions of certain PDEs in computer vision: The Godunov, Osher–Sethian and ENO schemes. Technical Report LEMS-132, Division of Engineering, Brown University, Providence, RI, 1994.
H. Talbot and R. Beare, editors. Proceedings of the Sixth International Symposium on Mathematical Morphology and its Applications. CSIRO Publishing, Sydney, Australia, April 2002. http://www.cmis.csiro.au/ismm2002/proceedings/.
R. van den Boomgaard. Numerical solution schemes for continuous-scale morphology. In M. Nielsen, P. Johansen, O. F. Olsen, and J. Weickert, editors, Scale-Space Theories in Computer Vision, volume 1682 of Lecture Notes in Computer Science, pages 199–210. Springer, Berlin, 1999.
L. J. van Vliet, I. T. Young, and A. L. D. Beckers. A nonlinear Laplace operator as edge detector in noisy images. Computer Vision, Graphics and Image Processing, 45(2):167–195, 1989.
J. Weickert. Coherence-enhancing shock filters. In B. Michaelis and G. Krell, editors, Pattern Recognition, volume 2781 of Lecture Notes in Computer Science, pages 1–8. Springer, Berlin, 2003.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag London Limited
About this chapter
Cite this chapter
Burgeth, B., Breuß, M., Didas, S., Weickert, J. (2009). PDE-based Morphology for Matrix Fields: Numerical Solution Schemes. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-299-3_6
Download citation
DOI: https://doi.org/10.1007/978-1-84882-299-3_6
Publisher Name: Springer, London
Print ISBN: 978-1-84882-298-6
Online ISBN: 978-1-84882-299-3
eBook Packages: Computer ScienceComputer Science (R0)