Skip to main content

Machine Learning Techniques for Biometrics

  • Chapter
Handbook of Remote Biometrics

Part of the book series: Advances in Pattern Recognition ((ACVPR))

  • 2193 Accesses

Abstract

This chapter reports recent advances in the statistical learning literature that may be of interest for biometrics. In particular we discuss two different algorithmic settings, binary classification and multi-task learning, and analyze the two closely related problems of feature selection and feature learning. In the binary case the theoretical and algorithmic advances to feature selection are applied to solve face detection and face authentication problems. In the multi-task case we show how the data structure described by a group of features common to the various tasks can be effectively learned, and then we discuss how this approach could be used to address face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Aggarwal, A. Chowdhury, and R. Chellappa., A system identification approach for video-based face recognition., In Proc. International Conference on Pattern Recognition, pages 175–178, 2004.

    Google Scholar 

  2. T. Ahonen, A. Hadid, and M. Pietikainen., Face description with local binary patterns: application to face recognition., IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(12):2037–2041, 2006.

    Article  Google Scholar 

  3. R. K. Ando and T. Zhang., A framework for learning predictive structures from multiple tasks and unlabeled data., Journal of Machine Learning Research, 6:1817–1853, 2005.

    MathSciNet  Google Scholar 

  4. A. Argyriou, T. Evgeniou, and M. Pontil., Convex multi-task feature learning., Machine Learning, 73(3):243–272, 2008.

    Article  Google Scholar 

  5. A. Argyriou, T. Evgeniou, and M. Pontil., Multi-task feature learning., In B. Schülkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19. MIT Press, 2006.

    Google Scholar 

  6. A. Argyriou, T. Evgeniou, and M. Pontil., Multi-task feature learning., In B. Schülkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19. MIT Press, 2007., In press.

    Google Scholar 

  7. J. Baxter., A model for inductive bias learning., Journal of Artificial Intelligence Research, 12:149–198, 2000.

    MATH  MathSciNet  Google Scholar 

  8. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman., Eigenfaces versus fisherfaces., IEEE Trans. on Pattern Analysis and Machine Intelligence, 19:711–720, 1997.

    Article  Google Scholar 

  9. M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli., On the use of sift features for face authentication., In Proc. of IEEE Int Workshop on Biometrics, in association with CVPR06, page 35ff, 2006.

    Google Scholar 

  10. R. Brunelli and T. Poggio., Face recognition: features versus templates., IEEE Trans. on Pattern Analysis and Machine Intelligence, 15:1042–1052, 1993.

    Article  Google Scholar 

  11. S. S. Chen, D. Donoho, and M. Saunders., Atomic decomposition by basis pursuit., SIAM Journal of Scientific Computing, 20(1), 1998.

    Google Scholar 

  12. I. Daubechies, M. Defrise, and C. De Mol., An iterative thresholding algorithm for linear inverse problems with a sparsity constraint., Communications on Pure Applied Mathematics, 57, 2004.

    Google Scholar 

  13. A. Destrero, C. De Mol, F. Odone, and A. Verri., A regularized approach to feature selection for face detection., Technical Report DISI-TR-07-01, Dipartimento di informatica e scienze dell’informazione, Universita’ di Genova, 2007.

    Google Scholar 

  14. A. Destrero, C. De Mol, F. Odone, and A. Verri., A regularized approach to feature selection for face detection., In Y. Yagi et al., editor, Proc. of the Asian Conference on Computer Vision, ACCV, LNCS 4844, pages 881–890, 2007.

    Google Scholar 

  15. A. Destrero, S. Mosci, C. De Mol, A. Verri, and F. Odone., Feature selection for high dimensional data., Computational Management Science, 6(1):25–40 (2009).

    Article  MathSciNet  Google Scholar 

  16. A. Destrero, F. Odone, and A. Verri., A system for face detection and tracking in unconstrained environments., In IEEE International Conference on Advanced Video and Signal-based Surveillance, In Proceedings IEEE AVSS 2007, pages 499–504, 2007.

    Google Scholar 

  17. D. Donoho. High-dimensional data analysis: The curses and blessings of dimensionality. Aide-Memoire of a Lecture at AMS conference on Math Challenges of 21st Century. Available at http://www-stat.stanford.edu/donoho/Lectures/AMS2000/AMS2000.html

  18. G. J. Edwards, C. J. Taylor, and T. F. Cootes., Improving identification performance by integrating evidence from sequences., Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, vol. 1, pp. 1486, 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’99) – Volume 1, 1999.

    Google Scholar 

  19. K. Etemad and R. Chellappa., Discriminant analysis for recognition of human face images., Journal of the Optical Society of America A, 14:1724–1733, 1997.

    Article  Google Scholar 

  20. M. Fazel, H. Hindi, and S. P. Boyd., A rank minimization heuristic with application to minimum order system approximation., In Proceedings, American Control Conference, 4734–4739, 2001.

    Google Scholar 

  21. Y. Freund and R. E. Schapire., A decision-theoretic generalization of on-line learning and an application to boosting., In European Conference on Computational Learning Theory, pages 23–37, 1995.

    Google Scholar 

  22. J. Friedman, T. Hastie, and R. Tibshirani., Additive logistic regression: a statistical view of boosting, 1998.

    Google Scholar 

  23. D. O. Gorodnichy., On importance of nose for face tracking., In IEEE International conference on automatic face and gesture recognition, pages 181–186, 2002.

    Google Scholar 

  24. I. Guyon and E. Elisseeff., An introduction to variable and feature selection., Journal of Machine Learning Research, 3:1157–1182, 2003.

    Article  MATH  Google Scholar 

  25. A. Hadid, M. Pietikäinen, and S. Z. Li., Learning personal specific facial dynamics for face recognition from videos., In Analysis and Modeling of Faces and Gestures, pages 1–15, Springer LNCS 4778, 2007.

    Google Scholar 

  26. X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang., Face recognition using laplacianfaces., IEEE Trans. Pattern Analysis and Machine Intelligence, 27:328-340, 2005.

    Article  Google Scholar 

  27. B. Heisele, P. Ho, J. Wu, and T. Poggio., Face recognition: component-based versus global approaches., Computer Vision and Image Understanding, 91:6–21, 2003.

    Article  Google Scholar 

  28. B. Heisele, T. Serre, M. Pontil, and T. Poggio., Component-based face detection., In CVPR, 2001.

    Google Scholar 

  29. A. K. Jain, A. Ross, and S. Prabhakar., An introduction to biometric recognition., IEEE Trans. on Circuits and Systems for Video Technology, 14(1), 2004.

    Google Scholar 

  30. T. Jebara., Multi-task feature and kernel selection for SVMs., In Proceedings of the 21st International Conference on Machine Learning, 2004.

    Google Scholar 

  31. K. Messer, J. Kittler, M. Sadeghi, M. Hamouz, A. Kostyn, S. Marcel, S. Bengio, F. Cardinaux, C. Sanderson, N. Poh, Y. Rodriguez, K. Kryszczuk, J. Czyz, L. Vandendorpe, J. Ng, H. Cheung, and B. Tang., Face authentication competition on the banca database., In Biometric Authentication, LNCS 3072, 2004.

    Google Scholar 

  32. B. Li and R. Chellappa., Face verification through tracking facial features., Journal of the Optical Society of America, JOSA-A, 18(12):2969–2981, 2001.

    Article  Google Scholar 

  33. S. Z. Li and Z. Q. Zhang., FloatBoost learning and statistical face detection., IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 2004.

    Google Scholar 

  34. R. Lanzarotti, S. Arca, P. Campadelli., A face recognition system based on automatically determined facial fiducial points., Pattern Recognition, 39(3):432–443, 2006.

    Article  MATH  Google Scholar 

  35. X. Liu, T. Chen, and B. V. K. Vijaya Kumar., On modeling variations for face authentication., Pattern Recognition, 36(2):313–328, 2003.

    Article  Google Scholar 

  36. B. Moghaddam and A. Pentland., Probabilistic visual learning for object representation., IEEE Trans. on Pattern Analysis and Machine Intelligence, 19:696–710, 1997.

    Article  Google Scholar 

  37. A. Mohan, C. Papageorgiou, and T. Poggio., Example-based object detection in images by components., IEEE Trans. on PAMI, 23(4):349–361, 2001.

    Google Scholar 

  38. C. de Mol, S. Mosci, M. S. Traskine, and A. Verri., Sparsity enforcing and correlation preserving algorithm for microarray data analysis., Technical Report DISI-TR-07-04, Dipartimento di informatica e scienze dell’informazione, Universita’ di Genova, 2007.

    Google Scholar 

  39. T. Ojala, M. Pietikainen, and T. Maenpaa., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns., IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(7), 2002.

    Google Scholar 

  40. E. Osuna, R. Freund, and F. Girosi., Training support vector machines: an application to face detection., Computer Vision and Pattern Recognition, IEEE Computer Society Conference on (CVPR’97), pp. 130, 1997

    Google Scholar 

  41. A. Pentland, B. Moghaddam, and T. Starner., View-based and modular eigenspaces for face recognition., In IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), page 84-91, 1994.

    Google Scholar 

  42. A. Pentland, B. Moghaddam, and T. Starner., Estimation of eye, eyebrow and nose features in videophone sequences., In International Workshop on Very Low Bitrate Video Coding (VLBV 98), page 101Â-104, 1998.

    Google Scholar 

  43. M. Pontil and A. Verri., Support vector machines for 3-d object recognition., IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 20:637–646, 1998.

    Article  Google Scholar 

  44. D. Roth, M. Yang, and N. Ahuja., A snowbased face detector., Neural Information Processing, 12, 2000.

    Google Scholar 

  45. H. Rowley, S. Baluja, and T. Kanade., Neural network-based face detection., IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:22–38, 1998.

    Article  Google Scholar 

  46. H. Schneiderman and T. Kanade., A statistical method for 3D object detection applied to faces and cars., In International Conference on Computer Vision, 2000.

    Google Scholar 

  47. J. Sergent., Microgenesis of face perception., In H. D. Ellis, M. A. Jeeves, F. Newcombe, and A. M. Young, editors, Aspects of face processing (pp. 17–33). Dordrecht: Martinus Nijhoff, 1986

    Google Scholar 

  48. S. Soatto, G. Doretto, and Y. Wu., Dynamic textures., In Proc of the International Conference on Computer Vision, pages 439–446, 2001.

    Google Scholar 

  49. N. Srebro, J. D. M. Rennie, and T. S. Jaakkola., Maximum-margin matrix factorization., In Advances in Neural Information Processing Systems, 17, pages 1329–1336. MIT Press, 2005.

    Google Scholar 

  50. K. Sung and T. Poggio., Example-based learning for view-based face detection., IEEE Transactions on PAMI, 20, 1998.

    Google Scholar 

  51. R. Tibshirani., Regression shrinkage and selection via the lasso., Journal of the Royal Statistical Society B, 58(1):267–288, 1996.

    MATH  MathSciNet  Google Scholar 

  52. A. Torralba, K. P. Murphy, and W. T. Freeman., Sharing features: efficient boosting procedures for multiclass object detection., In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2: 762–769, 2004.

    Google Scholar 

  53. M. A. Turk and A. P. Pentland., Eigenfaces for recognition., Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

    Article  Google Scholar 

  54. S. Ullman, M. Vidal-Naquet, and E. Sali., Visual features of intermediate complexity and their use in classification., Nature Neuroscience, 5(7), 2002.

    Google Scholar 

  55. V. N. Vapnik., Statistical Learning Theory., Wiley, 1998.

    Google Scholar 

  56. P. Viola and M. J. Jones., Robust real-time face detection., International Journal on Computer Vision, 57(2):137–154, 2004.

    Article  Google Scholar 

  57. J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping., The use of zero-norm with linear models and kernel methods., Journal of Machine Learning Research, 3, 2003.

    Google Scholar 

  58. L. Wiskott, J. Fellous, N. Kuiger, and C. von der Malsburg., Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19:775–779, 1997.

    Article  Google Scholar 

  59. M.-H. Yang, D. J. Kriegman, and N. Ahuja., Detecting faces in images: a survey., IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(1):34–58, 2002.

    Article  Google Scholar 

  60. W. Zhao, R. Chellappa, A. Rosenfeld, and P.J. Phillips., Face recognition: a literature survey., ACM Computing Surveys, 35(4):399–458, 2003.

    Article  Google Scholar 

  61. J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani., 1-norm support vector machines., In Advances in Neural Information Processing SYstems, 16. MIT Press, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Odone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Odone, F., Pontil, M., Verri, A. (2009). Machine Learning Techniques for Biometrics. In: Tistarelli, M., Li, S.Z., Chellappa, R. (eds) Handbook of Remote Biometrics. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-385-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-385-3_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-384-6

  • Online ISBN: 978-1-84882-385-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics