Skip to main content

Detection of Singularities in Fingerprint Images Using Linear Phase Portraits

  • Chapter
Handbook of Remote Biometrics

Part of the book series: Advances in Pattern Recognition ((ACVPR))

  • 2119 Accesses

Abstract

abstract The performance of fingerprint recognition depends heavily on the reliable extraction of singularities. Common algorithms are based on a Poinc’are Index estimation. These algorithms are only robust when certain heuristics and rules are applied. In this chapter we present a model-based approach for the detection of singular points. The presented method exploits the geometric nature of linear differential equation systems. Our method is robust against noise in the input image and is able to detect singularities even if they are partly occluded. The algorithm proceeds by fitting linear phase portraits at each location of a sliding window and then analyses its parameters. Using a well-established mathematical background, our algorithm is able to decide if a singular point is existent. Furthermore, the parameters can be used to classify the type of the singular point into whorls, deltas and loops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Comaniciu and P. Meer. Mean shift analysis and applications. IEEE Int. Conf. Computer Vision (ICCV’99), Kerkyra, Greece, 1197–1203. Published by IEEE Computer Society Press. 2: 1197–1203, 1999.

    Google Scholar 

  2. M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, June 1981.

    Article  MathSciNet  Google Scholar 

  3. R. M. Ford and R. N. Strickland. Nonlinear phase portrait models for oriented textures. Computer Vision and Pattern Recognition, 1993. Proceedings CVPR ’93., 1993 IEEE Computer Society Conference on, pages 644–645, 1993.

    Google Scholar 

  4. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition, 2004.

    MATH  Google Scholar 

  5. A. K. Jain, L. Hong, S. Pankanti, and R. Bolle. An identity-authentication system using fingerprints. Proceedings of the IEEE, 85(9):1365–1388, 1997.

    Article  Google Scholar 

  6. A. K. Jain and K. Karu. Learning texture discrimination masks. IEEE Transactions on Pattern Analysis Machine Intelligence, 18(2):195–205, 1996.

    Article  Google Scholar 

  7. A. K. Jain and D. Maltoni. Handbook of Fingerprint Recognition. Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2003.

    MATH  Google Scholar 

  8. X. Jiang, M. Liu, and A. C. Kot. Reference point detection for fingerprint recognition. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, 1:540–543, 2004.

    Article  Google Scholar 

  9. E. Kreyszig. Advanced Engineering Mathematics. 6th edition, Wiley, New York, 1988.

    Google Scholar 

  10. J. Li, W.-Y. Yau, and H. Wang. Constrained nonlinear models of fingerprint orientations with prediction. Pattern Recognition, 39(1):102–114, January 2006.

    Article  Google Scholar 

  11. D. Maio and D. Maltoni. A structural approach to fingerprint classification. Pattern Recognition, 1996., Proceedings of the 13th International Conference on, 3:578–585, 1996.

    Article  Google Scholar 

  12. D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain. Fvc2002: Second fingerprint verification competition. Pattern Recognition, 2002. Proceedings. 16th International Conference on, 3:811–814, 2002.

    Google Scholar 

  13. D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain. Fvc2004: Third fingerprint verification competition. In D. Zhang and A. K. Jain, editors, ICBA, Lecture Notes in Computer Science, 3072: 1–7. Springer, New York 2004.

    Google Scholar 

  14. K. Nilsson and J. Bigun. Localization of corresponding points in fingerprints by complex filtering. Pattern Recognition Letters, 24(13):2135–2144, September 2003.

    Article  Google Scholar 

  15. A. R. Rao and R. Jain. Analyzing oriented textures through phase portraits. Pattern Recognition, 1990. Proceedings of the 10th International Conference on, 1:336–340, 1990.

    Google Scholar 

  16. A. R. Rao and R. C. Jain. Computerized flow field analysis: oriented texture fields. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 14(7):693–709, 1992.

    Article  Google Scholar 

  17. A. R. Rao and B. G. Schunck. Computing oriented texture fields. Computer Vision and Pattern Recognition, 1989. Proceedings CVPR ’89., IEEE Computer Society Conference on, pages 61–68, 1989.

    Google Scholar 

  18. C. F. Shu, R. Jain, and F. Quek. A linear algorithm for computing the phase portraits of oriented textures. Computer Vision and Pattern Recognition, 1991. Proceedings CVPR ’91., IEEE Computer Society Conference on, pages 352–357, 1991.

    Google Scholar 

  19. C.-F. Shu and R. C. Jain. Direct estimation and error analysis for oriented patterns. CVGIP: Image Underst., 58(3):383–398, November 1993.

    Article  Google Scholar 

  20. S. Wei, C. Xia, and J. Shen. Robust detection of singular points for fingerprint recognition. Signal Processing and Its Applications, 2003. Proceedings. Seventh International Symposium on, 2:439–442, 2003.

    Article  Google Scholar 

  21. W.-Y. Yau, J. Li, and H. Wang. Nonlinear phase portrait modeling of fingerprint orientation. Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th, 2:1262–1267, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ram, S., Bischof, H., Birchbauer, J. (2009). Detection of Singularities in Fingerprint Images Using Linear Phase Portraits. In: Tistarelli, M., Li, S.Z., Chellappa, R. (eds) Handbook of Remote Biometrics. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-385-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-385-3_15

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-384-6

  • Online ISBN: 978-1-84882-385-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics