Abstract
The study of human face recognition by psychologists and neuroscientists has run parallel to the development of automatic face recognition technologies by computer scientists and engineers. In both cases, there are analogous steps of data acquisition, image processing, and the formation of representations that can support the complex and diverse tasks we accomplish with faces. These processes can be understood and compared in the context of their neural and computational implementations. In this chapter, we present the essential elements of face recognition by humans and machines, taking a perspective that spans psychological, neural, and computational approaches. From the human side, we overview the methods and techniques used in the neurobiology of face recognition, the underlying neural architecture of the system, the role of visual attention, and the nature of the representations that emerges. From the computational side, we discuss face recognition technologies and the strategies they use to overcome challenges to robust operation over viewing parameters. Finally, we conclude the chapter with a look at some recent studies that compare human and machine performances at face recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
J. Bodamer. Die prosopagnosie. Arch. Psychiat. Nerv. 179:6–54, 1947.
N. Kanwisher, J. McDermott, and M. Chun. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–4311, 1997.
J. Barton. Disorders of face perception and recognition. Neurol Clin. 21:521–548, 2003.
A. Damasio. Prosopagnosia. Trends Neurosci. 132–135, 1985.
J. Meadows. The anatomical basis of prosopagnosia. J. Neurol. Neurosurg. Psychi., 37: 489–501, 1974.
E. DeRenzi. Prosopagnosia in two patients with CT scan evidence of damage confined to the right hemisphere. Neuropsychologia, 24:385–389. 1986.
T. Landis, J. Cummings, L. Christen, J. Bogen, and H-G. Imbof. Are unilateral right posterior cerebral lesions sufficient to cause prosopagnosia? Clinical and radiological findings in six additional patients. Cortex, 22:243–52, 1986.
V. Bruce and A.W. Young. Understanding face recognition. Br. J. Psychol. 77(3):305–327, 1986.
R. Bruyer, C. Laterre, X. Seron, P. Feyereisen, E. Strypstein, E. Pierrard, and D. Rectem. A case of prosopagnosia with some preserved covert remembrance of similar faces. Brain Cogn. 2:257–284, 1983.
J. Hornak, E. Rolls, and D. Wade. Face and voice expression identification in patients with emotional and behavioral changes following ventral frontal lobe damage. Neuropsychologia, 34:173–181, 1996.
F. Parry, A. Young, J. Saul, and A. Moss. Dissociable face processing impairments after brain injury. J. Clin. Exp. Neuropsychol. 13:545–558, 1991.
E. Shuttleworth, V. Syring, and N. Allen. Further observations on the nature of prosopagnosia. Brain Cogn. 1:307–322, 1982.
D. Tranel, A. Damasio, and H. Damasio. Intact recognition of facial expression, gender, and age in patients with impaired recognition of face identity. Neurology, 38:690–696, 1988.
A. Calder, A. Young, D. Rowland, D. Perrett, J. Hodges, and H. Etcoff. Facial emotion recognition after bilateral amygdala damage: Differentially severe impairment of fear. Cogn. Neuropsychol. 13:699–745, 1996.
G. Humphreys, N. Donnelly, and M. Riddoch. Expression is computed separately from facial identity, and it is computed separately for moving and static faces: Neuropsychological evidence. Neuropsychologia, 31:173–181, 1993.
J. Kurucz and J. Feldmar. Prosopo-affective agnosia as a symptom of cerebral organic brain disease. J. Am. Geriatr. Soc. 27:91–95, 1979.
J. Kurucz, J. Feldmar, and W. Werner. Prosopo-affective agnosia associated with chronic organic brain syndrome. J. Am. Geriatr. Soc. 27:225–230, 1979.
A. Young. Face recognition impairments. Philos. Trans. Roy. Soc. Lond. 335B:47–54, 1992.
A. Calder and A. Young. Understanding the recognition of facial identity and facial expression. Nature Rev. Neurosci. 6:641–651, 2005.
D.H. Hubel and T. Wiesal. Receptive fields, binocular interactiion, and functional architecture in cat’s visual cortex. J. Physiol. 160:106–154, 1962.
J. Movshon, and W. Newsome. Neural foundations of visual motion perception. Curr. Direct. Psychol. Sci. 1:35–39, 1992.
S. Zeki. Color coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience, 9:741–765, 1983.
C. Gross, C. Rocha-Miranda, and D. Bender. Visual properties of neurons in inferotemporal cortex of monkeys. J. Neurophysiol. 35:96–111, 1972.
C. Gross. Brain, Vision, and Memory. MIT Press, Cambridge, MA, 1998.
M. Hasselmo, E. Rolls, and G. Baylis. Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey. Exp. Brain Res. 75:417–429, 1989.
J. Hietanen, D. Perrett, M. Oram, P. Benson, and W. Dittrich. The effects of lighting conditions on responses of cells selective for face views in the macaque temporal cortex. Exp. Brain Res. 89:157–171, 1992.
D. Perrett, J. Hietanen, M. Oram, and P. Benson. Organization and function of cells responsive to faces in temporal cortex. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 335: 23–30, 1992.
E. Eger, S. Schweinberger, R. Dolan, and R. Hensond. Familiarity enhances invariance of face representations in human ventral visual cortex: fMRI evidence. Neurolmage, 26:1128–1139, 2005.
K. Grill-Spector, T. Kushnir, S. Edelman, G. Avidan, Y. Itzchak, and R. Malach. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24, 187–203, 1999.
J. Haynes, and G. Rees. Decoding mental states from brain activity in humans. Nature Rev. Neurosci. 7:523–534, 2006.
A.J. O’Toole, F. Jiang, H. Abdi, N. Penard, J. Dunlop, and M. Parent. Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data in ventral temporal cortex. J. Cogn. Neurosci. 19:1735–1752, 2007.
J.V. Haxby, E.A. Hoffman, and M.I. Gobbini. The distributed human neural system for face perception. Trends Cogn. Sci. 20(6): 223–233, 2000.
I. Gauthier, M.J. Tarr, A.W. Anderson, P. Skudlarski, and J.C. Gore. Activation of the middle fusiform face area increases with expertise recognizing novel objects. Nature Neurosci. 2: 568–573, 1999.
J.V. Haxby, M.I. Gobbini, M.L. Furey, A. Ishai, J.L. Shouten and J.L.Pietrini. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293: 2425–2430, 2001.
M. Spiridon and N. Kanwisher. How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron, 35: 1157, 2002.
T. Carlson, P. Schrater, and S. He. Patterns of activity in the categorical representations of objects. J. Cogn. Neurosci. 15:704–717, 2003.
D. Cox and R. Savoy. Functional magnetic resonance imaging (fMRI) “Brain Reading”: Detecting and classifying distributed patterns of FMRI activity in human visual cortex. Neuroimage 19:261–270, 2003.
Y. Kamitani and F. Tong. Decoding the visual and subjective contents of the human brain. Nature Neurosci. 8:679–685, 2005.
A.J. O’Toole, F. Jiang, H. Abdi, and J. Haxby. Partially distributed representations of objects and faces in ventral temporal cortex. J. Cogn. Neurosci. 17:580–590, 2005.
T. Allison, A. Puce and G. McCarthy. Social perception from visual cues: Role of the STS region. Trends Cogn. Sci. 4:267–278, 2000.
E.A. Hoffman and J.V. Haxby. The distinct representations of eye gaze in and identity in the distributed human neural system for face perception. Nature Neurosci. 3: 80–84, 2000.
M. Oram and D.I. Perrett. Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the Macaque monkey. J. Neurophysiol. 76, 109–129, 1996.
D.H. Ballard. Animate vision. Artifi. Intelli. 48:57–86, 1991.
Y. Aloimonos. Purposize, qualitative, active vision. CVGIP: Image Understand. 56(special issue on qualitative, active vision):3–129, July 1992.
M. Tistarelli. Active/space-variant object recognition. Image Vision Comput. 13(3):215–226, 1995.
E. L. Schwartz, D. N. Greve, and G. Bonmassar. Space-variant active vision: definition, overview and examples. Neural Networks 8(7/8):1297–1308, 1995.
C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson. Human photoreceptor topography J. Comput. Neurol. 292 (4) : 497–523, 1990.
G. Sandini, G. Metta. Retina- like sensors: Motivations, technology and applications In Sensors and Sensing in Biology and Engineering, T.W. Secomb, F. Barth and P. Humphrey (Eds). Springer-Verlag, Berlin, 2002.
P. J. Burt. Smart sensing in machine vision. In Machine Vision: Algorithms, Architectures, and Systems. Academic Press, New York, 1988.
F. Tong and Z.N. Li. The reciprocal-wedge transform for space-variant sensing. In 4th IEEE Intl. Conference on Computer Vision, pages 330–334, Berlin, 1993.
E. L. Schwartz. Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biol. Cyber. 25, 181–194, 1977.
T.E. Fisher and R.D. Juday. A programmable video image remapper. In Proceedings of SPIE, volume 938, pages 122–128, 1988.
E. Grosso and M. Tistarelli. Log-polar Stereo for Anthropomorphic Robots. In Proc. of 6th European Conference on Computer Vision, pages 299-313, Springer Verlag LNCS 1842, 2000.
J.M. Henderson, C.C. Williams, and R.J. Falk. Eye movements are functional during face learning. Mem. Cogn. 33(1), 98–106, 2005.
A.L. Yarbus. Eye Movements and Vision. Plenum Press, New York, 1967.
Y. Yeshurun and E. L. Schwartz. Shape description with a space-variant sensor: Algorithms for scan-path, fusion and convergence over multiple scans. IEEE Trans. PAMI, PAMI-11:1217–1222, Nov. 1993.
J. Shepherd. Social factors in face recognition. In G. Davies, H. Ellis & J. Shepherd (Eds.). Perceiving and Remembering face, Academic Press, London, 55–79, 1981.
F. K. D. Nahm, A. Perret, D. Amaral, and T. D. Albright. How do monkeys look at faces?. J. Cogn. Neurosci. 9, 611–623, 1997.
M. M. Haith, T. Bergman, and M. J. Moore. Eye contact and face scanning in early infancy. Science, 198, 853–854, 1979.
A. Klin. Eye-tracking of social stimuli in adults with autism. NICHD Collaborative Program of Excellence in Autism, Yale University, New Haven, CT, May 2001.
M. Tistarelli, and E. Grosso. Active vision-based face authentication. Image and Vision Computing: Special issue on Facial Image Analysis, M. Tistarelli ed., vol. 18, no. 4, 299–314, 2000.
M. Bicego, E. Grosso, and M. Tistarelli. On finding differences between faces. in Audio- and Video-based Biometric Person Authentication, T. Kanade, A. Jain, and N.K. Ratha, Eds., vol. LNCS 3546, pp. 329–338. Springer, 2005.
C. Goren, M. Sarty, and P. Wu. Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics 56, 544–549, 1975.
P. Thompson. Margaret Thatcher: A new illusion. Perception 9 : 483–484, 1980.
R.K. Yin. Looking at upside-down faces. J. Exp. Psychol. 81 : 141–145, 1969.
R.E. Galper and J. Hochberg. Recognition memory for photographs of faces. Am. J. Psychol. 84(3), 351–354, 1971.
A.J. O’Toole, T. Vetter, and V. Blanz. Two-dimensional reflectance and three-dimensional shape contributions to face recognition across viewpoint change. Vision Res. 39 : 3145–3155, 1997.
V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces. In SIGGRAPH’99 Proceedings, ACM: Computer Society Press, 187–194, 1999.
P. Sinha, B.J. Balas, Y. Ostrovsky, R. Russell. Face recognition by humans: 19 results all computer vision researchers should know about. Proceedings of the IEEE, vol. 94, no. 11, pp 1948–1962, 2006.
L. Light, F. Kayra-Stuart, and S. Hollander. Recognition memory for typical and unusual faces. J. Exp. Psychol. Human Learn. Mem. 5 : 212–228, 1979.
T. Valentine. A unified account of the effects of distinctiveness, inversion, and race in face recognition. Quar. J. Exp. Psychol. 43A : 161–204, 1991.
G. Rhodes. Superportraits: Caricatures and Recognition. Psychology Press, Hove, UK, 1997.
R.S. Malpass and J. Kravitz. Recognition for faces of own and other race faces. J. Personality Soc. Psychol. 13 : 330–334, 1969.
J.C. Brigham and P. Barkowitz. Do “They all look alike?” The effects of race, sex, experience and attitudes on the ability to recognize faces. J. Appl. Soc. Psychol. 8:306–318, 1978.
C.A. Meissner and J.C. Brigham. Thirty years of investigating the own-race bias in memory for faces: A meta-analytic review. Psychol Public Policy Law 7: 3–35, 2001.
G. Bryatt and G. Rhodes. Recognition of own-race and other-race caricatures: Implications for models of face recognition. Vision Res. 38:2455–2468, 1998.
D.J. Kelly, P.C. Quinn, A.M Slater, A.M. Lee, L. Ge and O. Pascalis. The other-race effect develops during infancy: Evidence of perceptual narrowing. Psychol. Sci. 18:1084–1089.
P.K. Kuhl, K.A. Williams and F. Lacerdo. Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255:606–608, 1992.
A.J. O’Toole, D. Roark, and H. Abdi. Recognition of moving faces: a psychological and neural perspective. Trends Cogn. Sci. 6 : 261–266, 2002.
H. Hill and A. Johnston. Categorizing sex and identity from the biological motion of faces. Curr. Biol. 11:880–885, 2001.
B. Knappmeyer, I.M. Thornton and H.H. Bulthoff. The use of facial motion and facial form during the processing of identity. Vision Res. 43:1921–1936, 2003.
W.H. Merigan. P and M pathway specialization in the macaque. In A. Valberg and B.B. Lee, editors. From Pigments to Perception. Plenum, New York, pp. 117–125, 1991.
M. Kirby and L. Sirovich, Application of the Karhunen–Loeve procedure for the characterization of human faces. IEEE Trans. Patt. Anal. Mach. Intelli. 2 (1), 103–108, Jan. 1990.
M. Turk and A. P. Pentland. Eigenfaces for recognition. J. Cogn. Neurosci. 3 (1), 7186, 1991.
B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319, 1999.
L. Chengjun. Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans. Patt. Anal. Mach. Intelli. 26(5), 572–581, May 2004.
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization, Nature, 401, pp. 788–791, 1999.
S.Z. Li, X.W. Hou, and H.J. Zhang, Learning spatially localized, parts-based representation, in CVPR, 2001, pp. 207–212.
H. Yu and J. Yang. A direct lda algorithm for high-dimensional data with application to face recognition. Patt. Recogn. 34, 2067–2070, 2001.
L. Juwei, K.N. Plataniotis, and A.N. Venetsanopoulos. Face recognition using lda-based algorithms. IEEE Trans. Neural Networks 14(1), 195–200, 2003.
P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Patt. Anal. Mach. Intelli 19(7), 711–720, 1997.
G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Comput. 12, 2385–2404, 2000.
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to Kernel-based learning algorithms. IEEE Trans. Neural Networks 12(2), 181–201, 2001.
L. Juwei, K.N. Plataniotis, and A.N. Venetsanopoulos. “Face recognition using kernel direct discriminant analysis algorithms.” IEEE Tran. Neural Networks 14(1), 117–126, 2003.
S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller, Fisher discriminant analysis with Kernels, Proc. IEEE Int Workshop Neural Networks for Signal Processing IX, pp.41–48, Aug. 1999.
S. Mika, G. Rätsch, B. Schölkopf, A. Smola, J. Weston, and K.-R. Müller. Invariant Feature Extraction and Classification in Kernel Spaces, Advances in Neural Information Processing Systems 12, MIT Press, Cambridge, MA, 1999.
A. Martinez and A. Kak. PCA versus LDA. IEEE Trans. Patt. Anal. Mach. Intell. 23(2), 228–233, 2001.
A.K. Jain and B. Chandrasekaran. Dimensionality and sample size considerations in pattern recognition practice. in Handbook of Statistics, P. R. Krishnaiah and L. N. Kanal (Eds.) North-Holland, Amsterdam, vol. 2, pp. 835-855, 1987.
S.J. Raudys and A.K. Jain. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Patt. Anal. Mach. Intell. 13(3), 252–264, 1991.
M.S. Bartlett, J.R. Movellan and T.J. Sejnowski. Face recognition by independent component analysis. IEEE Trans. Neural Networks 13(6), 1450–1464, 2002.
L. Chengjun and H. Wechsler. Independent component analysis of Gabor features for face recognition. IEEE Trans. Neural Networks 14,(4), 919–928, July 2003.
F. Bach and M. Jordan. Kernel independent component analysis. J. Mach. Learn. Res. 3, 1–48, 2002.
F.L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Patt. Anal. Mach. Intelli. 11, 567–585, 1989.
F.Y. Shih and C. Chuang. Automatic extraction of head and face boundaries and facial features. Inf. Sci. 158, 117–130, 2004.
K. Sobottka and I. Pitas. A fully automatic approach to facial feature detection and tracking. in J. Bigün, G. Chollet, G. Borgefors (eds.), Audio- and Video-Based Biometric Person Authentication, LNCS, vol.1206, pp.77-84, Springer Verlag, Berlin, 1997.
M. Zobel, A. Gebhard, D. Paulus, J. Denzler and H. Niemann. Robust facial feature localization by coupled features. in 4th IEEE Int. Conf. on Automatic Face and Gesture Recognition, Grenoble, France, 2000.
L. Wiskott, J. M. Fellous, and C. V. der Malsburg. Face recognition by elastic bunch graph matching. IEEE Trans. Patt. Anal. Mach. Intelli. 19, 775–779, 1997.
Z. Xue, S.Z. Li and E.K. Teoh. Bayesian shape model for facial feature extraction and recognition. Patt. Recogn. 36, 2819–2833, 2003.
A. Pentland, B. Moghaddam and T. Starner. View-based and modular eigenspaces for face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 84–91, 21–23 June 1994, Seattle, Washington, USA.
J. Lange, C. V. D. Malsburg, R. P. Wurtz and W. Konen. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Compu. 42(3), 300–311, March 1993.
L. Wiskott. Phantom faces for face analysis. Patt. Recogn. 30(6), 837–846, 1997.
B. Duc, S. Fischer, and J. Bigün. Face authentication with Gabor information on deformable graphs. IEEE Trans. Image Process. 8(4), 504–516, Apr. 1999.
C. Kotropoulos, A. Tefas, and I. Pitas. Frontal face authentication using morphological elastic graph matching. IEEE Trans. Image Process. 9(4), 555–560, Apr. 2000.
P. T. Jackway and M. Deriche. Scale-space properties of the multiscale morphological dilation-erosion. IEEE Trans. Patt. Anal. Mach. Intelli. 18(1), 38–51, 1996.
A. Tefas, C. Kotropoulos and I. Pitas. Face verification using elastic graph matching based on morphological signal decomposition. Signal Process. 82(6), 833–851, 2002.
N. Kruger. An algorithm for the learning of weights in discrimination functions using A priori constraints. IEEE Trans. Patt. Anal. Mach. Intelli. 19(7), 764–768, July 1997.
A. Tefas, C. Kotropoulos and I. Pitas. Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication. IEEE Trans. Patt. Anal. Mach. Intelli. 23(7), 735–746, 2001.
K. I. Chang, K. W. Bowyer, and P. J. Flynn. Face Recognition Using 2D and 3D Facial Data. Workshop in Multimodal User Authentication, pp. 25-32, Santa Barbara, California, December. 2003.
Kyong I. Chang, Kevin W. Bowyer and Patrick J. Flynn. An evaluation of multi-modal 2D+3D face biometrics. IEEE Trans. Patt. Anal. Mach. Intelli. 27(4), 619–624, 2005.
C. Kotropoulos, A. Tefas and I. Pitas. Frontal face authentication using discriminating grids with morphological feature vectors. IEEE Trans. Multimedia 2(1), 14–26, Mar. 2000.
S. Arca, P. Campadelli, R. Lanzarotti. A face recognition system based on automatically determined facial fiducial points. Patt. Recogn. 39(3), 432–443, March 2006.
E.G. Llano, H. Mendez-Vazquez, J. Kittler and K. Messer. An illumination insensitive representation for face verification in the frequency domain. In Proceedings of the 18th international Conference on Pattern Recognition – Vol 01, pp. 215-218, (August 20–24, 2006), IEEE Computer Society, Washington, DC.
S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. M. ter Haar Romeny, J. B. Zimmerman, K. Zuiderveld. Adaptive histogram equalization and its variations. CVGIP 39(3):355–368, September 1987.
Y. Adini, Y. Moses and S. Ullman. Face recognition: The problem of compensating for changes in illumination direction. IEEE Trans. Patt. Anal. Mach. Intelli. 19(7):721–732, 1997.
H. W. Jensen. Digital face cloning. In Proceedings SIGGRAPH’2003 Technical Sketch, San Diego, July 2003.
Laiyun Qing, Shiguang Shan, and Xilin Chen. Face relighting for face recognition under generic illumination. ICASSP 2004, pp. 733–736, 2004.
R. Gross and V. Brajovic. An image preprocessing algorithm for illumination invariant face recognition. Proc. of International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 10–18, 2003.
Haitao Wang, Stan Z. Li, Yangsheng Wang, and Weiwei Zhang. Illumination modeling and Normalization for Face Recognition Proceedings of IEEE International Workshop on Analysis and Modeling of Faces and Gestures. Nice, France. 2003.
Laiyun Qing, Shiguang Shan, and Wen Gao. Face recognition under varying lighting based on derivates of log image. In SINOBIOMETRICS, pp. 196–204, 2004.
Y. Weiss. Deriving intrinsic images from image sequences. Proc. ICCV,01. Vol. II, pp. 68–75, 2001.
M. Turk, A random walk through eigenspace, IEICE Trans. Information Systems, vol. E84-D, no. 12, pp. 1586-1695, December 2001.
P. J. Phillips, P. J. Flynn, W. T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. J. Worek, Overview of the face recognition grand challenge, In Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 947-954, 2005.
S. M., Lucas. Continuous n-tuple classifier and its application to real-time face recognition. In IEE Proceedings-Vision Image and Signal Processing, vol. 145, no. 5, October 1998, p. 343.
S. M. Lucas. and T. K., Huang. Sequence recognition with scanning N-tuple ensembles. In Proceedings ICPR04 (III) pp 410–413.
B., Raytchev, and H., Murase. Unsupervised recognition of multi-viewface sequences based on pairwise clustering with attraction andrepulsion. Comput. Vision Image Understand. 91(1-2), July–August 2003, pp. 22–52.
B. Raytchev, and H. Murase. VQ-Faces: Unsupervised face recognition from image sequences. In Proceedings ICIP02 (II), pp. 809–812.
B. Raytchev, and H. Murase. Unsupervised face recognition from image sequences. In Proceedings ICIP01(I), pp. 1042–1045.
S. Zhou, V. Krueger, and R. Chellappa. Probabilistic recognition of human faces from video. Comput. Vision Image Understand. 91(1-2), 214–245, July–August 2003.
S.K. Zhou, R. Chellappa, and B. Moghaddam. Visual Tracking and Recognition using appearance-adaptive models in particle filters. Image Process. (11) 1491–1506, November 2004.
Y. Li, S. Gong, and H. Liddell. Modelling faces dynamically across views and over time. In Proceedings IEEE International Conference on Computer Vision, pages 554-559, Vancouver, Canada, July 2001.
Y. Li, S. Gong, and H. Liddell. Support vector regression and classification based multiview face detection and recognition. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition (FGR’00), Grenoble, France, pp.300–305, 2000.
A.J. Howell and H. Buxton. Towards unconstrained face recognition from image sequences. In Proceeding. of the IEEE International Conference on Automatic Face and Gesture Recognition (FGR’96), Killington, VT, pp. 224–229, 1996.
F. Roli and J. Kittler, (Eds.) Multiple Classifier Systems. Springer Verlag, Berlin, LNCS 2364, 2002.
B. Achermann and H. Bunke. Combination of classifiers on the decision level for face recognition. Technical Report IAM-96-002, Institut für Informatik und angewandte Mathematik, Universität Bern, January 1996.
X. Liu, and T. Chen. Video-based face recognition using adaptive hidden Markov models. In Proceedings CVPR03 (I), pp. 340–345.
Bicego, M., Grosso, E. and Tistarelli, M.: Person authentication from video of faces: a behavioral and physiological approach using Pseudo Hierarchical Hidden Markov Models. In Proceedings Intern.l Conference on Biometric Authentication 2006, Hong Kong, China, January 2006, pp 113-120, LNCS 3832.
Tistarelli, M., Bicego, M. and Grosso, E.: Dynamic face recognition: From human to machine vision. Image and Vision Computing: Special issue on Multimodal Biometrics, M. Tistarelli and J. Bigun ed.s, doi:10.1016/j.imavis.2007.05.006.
Arandjelovic, O., Cipolla, R.: Face Recognition from Face Motion Manifolds using Robust Kernel Resistor-Average Distance. In Proceedings FaceVideo04, pp 88.
Lee, K.C., Ho, J., Yang, M.H., Kriegman, D.J.: Video-based face recognition using probabilistic appearance manifolds. In Proceedings CVPR03 (I), pp 313-320.
Yamaguchi, O., Fukui, K., Maeda, K.: Face Recognition Using Temporal Image Sequence. In Proceedings IEEE AFGR98, pp 318-323.
K. Fukui and O. Yamaguchi: Face recognition using multiviewpoint patterns for robot vision. In Proceedings International Symposium of Robotics Research, 2003.
Shakhnarovich, G., Fisher, J.W., Darrell, T.J.: Face Recognition from Long-Term Observations. In Proceedings ECCV02 (III), pp 851.
Raytchev, B., Murase, H.: Unsupervised Face Recognition from Image Sequences. In Proceedings ICIP01(I), pp 1042-1045.
D.G. Lowe.: Object recognition from local scale invariant features. Proc. of International Conference on Computer Vision, pp 1150-1157, 1999.
D.R. Kisku, A. Rattani, E. Grosso, M. Tistarelli. Face Identification by SIFT-based Complete Graph Topology. Proc. of 5th IEEE Workshop on Automatic Identification Advanced Technologies, pp 63-68. Alghero, Italy, June 2007.
A.J. O, Toole, P.J. Phillips, F. Jiang, J.J. Ayadd, N. Penard and H. Abdi.: Face recognition algorithms surpass humans matching faces across changed in illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:1642–1646, 2007.
A.J. O, Toole, H. Abdi,F. Jiang,J.J. and P.J. Phillips.: Fusing face recognition algorithms and humans. IEEE Transactions on Systems, Man and Cybernetics, 37:1149-1155, 2007.
P.J. Phillips, W.T. Scruggs, A.J. O, Toole, P.J. Flynn, K.W. Bowyer, C.L.; Schott, and M. Sharpe. FiRVT 2006 and ICE 2006 Large-Scale Experimental Results. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 Mar. 2009. IEEE Computer Society, <http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.59>
M. Husken, B. Brauckmann, S. Gehlen, and C. von der Malsburg. Strategies and benefits of fusion of 2D and 3D face recognition. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),3:174, 2005.
C. Liu.: Capitalize on dimensionality increasing techniques for improving face recognition Grand Challenge performance. IEEE Trans. Patt. Anal. Mach. Intelli. 28: 725-737, 2006.
C.M Xie, M. Savvides and V Kumar.: Kernel correlation filter based redundant class-dependence feature analysis (KCFA) on FRGC2.0 Data IEEE International Workshop Analysis & Modeling Faces & Gestures, 32–43, 2005.
V. Bruce, Z. Henderson, C. Newman, and A.M. Burton.: Matching identities of familiar and unfamiliar faces caught on CCTV images. J. Exp. Psychol.: Appl. 7:207–218, 2001.
A.M. Burton, V. Bruce, and P.J.B. Hancock.: From pixels to people: a model of familiar face recognition. Cogn. Sci. 23: 1–31, 1999.
A.M. Burton, S. Wilson, M. Cowan, and V. Bruce.: Face recognition in poor-quality video. Psychological Science, 10:243–248, 1999.
H. Abdi, D. Valentine, B. Edelman, and A.J. O’Toole.: More about the difference between men and women: evidence from linear neural networks and the principal-component approach. Perception 24 : 539–562, 1995.
E. H. Aylward et al.: Brain activation during face perception: evidence of a development change. J. Cogn. Neurosci. 17:308–319, 2005.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag London Limited
About this chapter
Cite this chapter
O’Toole, A., Tistarelli, M. (2009). Face Recognition in Humans and Machines. In: Tistarelli, M., Li, S.Z., Chellappa, R. (eds) Handbook of Remote Biometrics. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-385-3_5
Download citation
DOI: https://doi.org/10.1007/978-1-84882-385-3_5
Publisher Name: Springer, London
Print ISBN: 978-1-84882-384-6
Online ISBN: 978-1-84882-385-3
eBook Packages: Computer ScienceComputer Science (R0)