Abstract
Face recognition at a distance (FRAD) is one of the most challenging forms of face recognition applications. In this chapter, we analyze issues in FRAD system design, which are not addressed in near-distance face recognition, and present effective solutions for making FRAD systems for practical deployments. Evaluation of FRAD systems is discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Z. Lei, R. Chu, R. He, and S. Z. Li. Face recognition by discriminant analysis with gabor tensor representation. In Proceedings of IAPR International Conference on Biometric, volume 4642/2007, Seoul, Korea, 2007.
S. Z. Li, R. Chu, S. Liao, and L. Zhang. Illumination invariant face recognition using near-infrared images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(Special issu e on Biometrics: Progress and Directions), April 2007.
S. Z. Li and Z. Q. Zhang. FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1112–1123, September 2004.
S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Z. Li. Learning multi-scale block local binary patterns for face recognition. In Proceedings of IAPR International Conference on Biometric, volume 4642/2007, Seoul, Korea, 2007.
R. Liu, X. Gao, R. Chu, X. Zhu, and S. Z. Li1. Tracking and recognition of multiple faces at distances. In Proceedings of IAPR International Conference on Biometric, volume 4642/2007, Seoul, Korea, 2007.
S. Mckenna, S. Gong, and Y. Raja. Face recognition in dynamic scenes. In Proceedings of British Machine Vision Conference, pages 140–151. BMVA Press, 1997.
P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. Worek. Overview of the face recognition grand challenge. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
S. Prince, J. Elder, Y. Hou, M. Sizinstev, and E. Olevsky. Towards face recognition at a distance. Crime and Security, 2006. The Institution of Engineering and Technology Conference on, pages 570–575, June 2006.
H. Wang, S. Z. Li, and Y. Wang. Face recognition under varying lighting conditions using self quotient image. fg, 0:819, 2004.
L. Zhang, R. Chu, S. Xiang, S. Liao, and S. Z. Li. Face detection based on multi-block lbp representation. In Proceedings of IAPR International Conference on Biometric, volume 4642/2007, Seoul, Korea, 2007.
W. Zhao, R. Chellappa, P. Phillips, and A. Rosenfeld. Face recognition: A literature survey. ACM Computing Surveys, pages 399–458, 2003.
S. Zhou, V. Krueger, and R. Chellappa. Face recognition from video: A condensation approach. fg, 0:0221, 2002.
S. Zhou, V. Krueger, and R. Chellappa. Face recognition from video: a condensation approach. Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on, pages 221–226, May 2002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag London Limited
About this chapter
Cite this chapter
Ao, M., Yi, D., Lei, Z., Li, S.Z. (2009). Face Recognition at a Distance: System Issues. In: Tistarelli, M., Li, S.Z., Chellappa, R. (eds) Handbook of Remote Biometrics. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-385-3_6
Download citation
DOI: https://doi.org/10.1007/978-1-84882-385-3_6
Publisher Name: Springer, London
Print ISBN: 978-1-84882-384-6
Online ISBN: 978-1-84882-385-3
eBook Packages: Computer ScienceComputer Science (R0)