Texts in Computer Science

Editors
David Gries
Fred B. Schneider

For further volumes:
www.springer.com/series/3191

Krzysztof R. Apt
Frank S. de Boer
Ernst-Riidiger Olderog

Verification of Sequential
and Concurrent Programs

Third, Extended Edition

@ Springer

Krzysztof R. Apt Frank S. de Boer

Centrum Wiskunde Centrum Wiskunde
& Informatica & Informatica
Science Park 123 Science Park 123
1098 XG Amsterdam 1098 XG Amsterdam
Netherlands Netherlands
k.r.apt@cwi.nl F.S.de.Boer@cwi.nl

Ernst-Riidiger Olderog

Department fiir Informatik
Universitidt Oldenburg

26111 Oldenburg

Germany

olderog @informatik.uni-oldenburg.de

Series Editors

David Gries Fred B. Schneider

Department of Computer Science Department of Computer Science
Upson Hall Upson Hall

Cornell University Cornell University

Ithaca, NY 14853-7501, USA Ithaca, NY 14853-7501, USA
ISSN 1868-0941 e-ISSN 1868-095X

ISBN 978-1-84882-744-8 e-ISBN 978-1-84882-745-5

DOI 10.1007/978-1-84882-745-5
Springer Dordrecht Heidelberg London New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2009932111

© Springer-Verlag London Limited 2009, Reprinted with corrections 2010

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by
the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent
to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Endorsements

Enhanced with new material on recursion and object-oriented pro-

grams, this book now covers methods for verifying sequential, object-
oriented, and concurrent programs using well-chosen sample programming
languages that highlight fundamental issues and avoid incidental complica-
tions. With growing challenges today to produce correct software systems
for the future, this book lets students wisely use a few months now to master
concepts that will last them a lifetime.

T HE THIRD EDITION is an excellent new version of a valuable book.

John C. Mitchell, Stanford University

Verification of programs is the Holy Grail of Computer Science. This book
makes its pursuit seem both pleasant and worthwhile. Its unique strength lies
in the way the authors have deconstructed the apparently complex subject
such that each piece carries exactly one idea. The beauty of the presentation
extends from the overall structure of the book to the individual explanations,
definitions and proofs.

Andreas Podelski, University of Freiburg

Program verification became an interesting research topic of comput-
ing science about forty years ago. Research literature on this topic has
grown quickly in accordance with rapid development of various programming
paradigms. Therefore it has been a challenge to university lecturers on
program verification how to carefully select an easy but comprehensive
approach, which can fit in with most programming paradigms and can be
taught in a systematic way. The publication of this book is an answer to
the challenge, and to my knowledge quite many university lecturers have
been influenced by the earlier editions of this book if not chosen them as

vi Endorsements
textbook. Given that the third edition includes verification of object-oriented
programs — the most fashionable programming paradigm, and presents it in a
way coherent with the approach adopted by the earlier ones, we can expect
a further impact of the new edition on university teachings.

Zhou Chaochen, Chinese Academy of Sciences, Beijing

Foreword

syntax-directed and compositional methods for the formal verifi-

cation of programs. The approach is not language-bounded in the
sense that it covers a large variety of programming models and features that
appear in most modern programming languages. It covers the classes of se-
quential and parallel, deterministic and non-deterministic, distributed and
object-oriented programs. For each of the classes it presents the various cri-
teria of correctness that are relevant for these classes, such as interference
freedom, deadlock freedom, and appropriate notions of liveness for parallel
programs. Also, special proof rules appropriate for each class of programs are
presented. In spite of this diversity due to the rich program classes consid-
ered, there exist a uniform underlying theory of verification which is syntax-
oriented and promotes compositional approaches to verification, leading to
scalability of the methods.

The text strikes the proper balance between mathematical rigor and di-
dactic introduction of increasingly complex rules in an incremental manner,
adequately supported by state-of-the-art examples. As a result it can serve as
a textbook for a variety of courses on different levels and varying durations.
It can also serve as a reference book for researchers in the theory of verifica-
tion, in particular since it contains much material that never before appeared
in book form. This is specially true for the treatment of object-oriented pro-
grams which is entirely novel and is strikingly elegant. I strongly recommend
this book to both teachers who wish to train students in the most advanced
techniques of verification, and to researchers in this important area.

[| | HIS BOOK CONTAINS a most comprehensive text that presents

Amir Pnueli
New York University and the Weizmann Institute of Science, Rehovot

vii

Preface

tems that we use or rely on in our daily lives. Numerous exam-

ples include booking terminals in travel agencies, automatic teller
machines, ever more sophisticated services based on telecommunication, sig-
naling systems for cars and trains, luggage handling systems at airports or
automatic pilots in airplanes.

For the customers of travel agencies and banks and for the passengers of
trains and airplanes the proper functioning and safety of these systems is of
paramount importance. Money orders should reflect the right bank accounts
and airplanes should stay on the desired route. Therefore the underlying
computer programs should work correctly; that is they should satisfy their
requirements. A challenge for computer science is to develop methods that
ensure program correctness.

Common to the applications mentioned above is that the computer pro-
grams have to coordinate a number of system components that can work
concurrently, for example the terminals in the individual travel agencies ac-
cessing a central database or the sensors and signals used in a distributed
railway signaling system. So to be able to verify such programs we need to
have at our disposal methods that allow us to deal with correctness of con-
current programs, as well.

C OMPUTER PROGRAMS ARE by now indispensable parts of sys-

Structure of This Book

The aim of this book is to provide a systematic exposition of one of the
most common approaches to program verification. This approach is usually
called assertional, because it relies on the use of assertions that are attached
to program control points. Starting from a simple class of sequential pro-

ix

b'e Preface

grams, known as while programs, we proceed in a systematic manner in two
directions:

e to more complex classes of sequential programs including recursive proce-
dures and objects, and
e to concurrent programs, both parallel and distributed.

We consider here sequential programs in the form of deterministic and
nondeterministic programs, and concurrent programs in the form of paral-
lel and distributed programs. Deterministic programs cover while programs,
recursive programs, and a simple class of object-oriented programs. Nondeter-
ministic programs are used to analyze concurrent programs and the concept
of fairness by means of program transformations. Parallel programs consist
of several sequential components that can access shared memory. By con-
trast, distributed programs consist of components with local memory that
can communicate only by sending and receiving messages.

For each of these classes of programs their input/output behavior in the
sense of so-called partial and total correctness is studied. For the verification
of these correctness properties an axiomatic approach involving assertions is
used. This approach was initiated by Hoare in 1969 for deterministic pro-
grams and extended by various researchers to other classes of programs. It is
combined here with the use of program transformations.

For each class of programs a uniform presentation is provided. After defin-
ing the syntax we introduce a structured operational semantics as originally
proposed by Hennessy and Plotkin in 1979 and further developed by Plotkin
in 1981. Then proof systems for the verification of partial and total cor-
rectness are introduced, which are formally justified in the corresponding
soundness theorems.

The use of these proof systems is demonstrated with the help of case stud-
ies. In particular, solutions to classical problems such as producer/consumer
and mutual exclusion are formally verified. Each chapter concludes with a
list of exercises and bibliographic remarks.

The exposition assumes elementary knowledge of programming languages
and logic. Therefore this book belongs to the area of programming languages
but at the same time it is firmly based on mathematical logic. All prerequisites
are provided in the preparatory Chapter 2 of Part I.

In Part II of the book we study deterministic programs. In Chapter 3
Hoare’s approach to program verification is explained for while programs.
Next, we move to the more ambitious structuring concepts of recursive and
object-oriented programs. First, parameterless recursive procedures are stud-
ied in Chapter 4, and then call-by-value parameters are added in Chap-
ter 5. These two chapters are taken as preparations to study a class of
object-oriented programs in Chapter 6. This chapter is based on the work
of the second author initiated in 1990, but the presentation is entirely new.

In Part III of the book we study parallel programs with shared variables.
Since these are much more difficult to deal with than sequential programs,

Preface xi

they are introduced in a stepwise manner in Chapters 7, 8, and 9. We base
our presentation on the approach by Owicki and Gries originally proposed in
1976 and on an extension of it by the authors dealing with total correctness.

In Part IV we turn to nondeterministic and distributed programs. Nonde-
terministic sequential programs are studied in Chapter 10. The presentation
is based on the work of Dijkstra from 1976 and Gries from 1981. The study
of this class of programs also serves as a preparation for dealing with dis-
tributed programs in Chapter 11. The verification method presented there
is based on a transformation of distributed programs into nondeterministic
ones proposed by the first author in 1986. In Chapter 12 the issue of fairness
is studied in the framework of nondeterministic programs. The approach is
based on the method of explicit schedulers developed by the first and third
authors in 1983.

Teaching from This Book

This book is appropriate for either a one- or two-semester introductory course
on program verification for upper division undergraduate studies or for grad-
uate studies.

In the first lecture the zero search example in Chapter 1 should be dis-
cussed. This example demonstrates which subtle errors can arise during the
design of parallel programs. Next we recommend moving on to Chapter 3
on while programs and before each of the sections on syntax, semantics and
verification, to refer to the corresponding sections of the preparatory Chap-
ter 2.

After Chapter 3 there are three natural alternatives to continue. The first
alternative is to proceed with more ambitious classes of sequential programs,
i.e., recursive programs in Chapters 4 and 5 and then object-oriented pro-
grams in Chapter 6. The second alternative is to proceed immediately to
parallel programs in Chapters 7, 8, and 9. The third alternative is to move
immediately to nondeterministic programs in Chapter 10 and then to dis-
tributed programs in Chapter 11. We remark that one section of Chapter 10
can be studied only after the chapters on parallel programs.

Chapter 12 on fairness covers a more advanced topic and can be used
during specialized seminars. Of course, it is also possible to follow the chapters
in the sequential order as they are presented in the book.

This text may also be used as an introduction to operational semantics.
We present below outlines of possible one-semester courses that can be taught
using this book. The dependencies of the chapters are shown in Fig. 0.1.

xii

Preface

1 Introduction 2 Preliminaries

4 Recursive Programs

5 Recursive Programs
with Parameters

6 Object-Oriented
Programs

3 while Programs /\
7 Disjoint Parallel Programs

8 Parallel Programs with
Shared Variables

9 Parallel Programs with

-~
-~
~——
~——.
-~

~——
~a
~———

10 Nondeterministic

Programs
11 Distributed 12 Fairness
Programs

Fig. 0.1 Dependencies of chapters. In Chapter 10 only Section 10.6 depends on

Chapter 9.

Changes in the Third Edition

The present, third edition of this book comes with a new co-author, Frank
S. de Boer, and with an additional topic that for many years has been at the
heart of his research: verification of object-oriented programs. Since this is
a notoriously difficult topic, we approach it in a stepwise manner and in a
setting where the notational complexity is kept at a minimum. This design
decision has led us to add three new chapters to our book.

e In Chapter 4 we introduce a class of recursive programs that extends deter-
ministic programs by parameterless procedures. Verifying such programs
makes use of proofs from assumptions (about calls of recursive procedures)
that are discharged later on.

e In Chapter 5 this class is extended to the recursive procedures with call-by-
value parameters. Semantically, this necessitates the concept of a stack for
storing the values of the actual parameters of recursively called procedures.
We capture this concept by using a block statement and a corresponding
semantic transition rule that models the desired stack behavior implicitly.

e In Chapter 6 object-oriented programs are studied in a minimal setting
where we focus on the following main characteristics of objects: they pos-

Preface xiii

sess (and encapsulate) their own local variables and interact via method
calls, and objects can be dynamically created.

To integrate these new chapters into the original text, we made various
changes in the preceding Chapters 2 and 3. For example, in Chapter 3 parallel
assignments and failure statements are introduced, and a correctness proof
of a program for partitioning an array is given as a preparation for the case
study of the Quicksort algorithm in Chapter 5. Also, in Chapter 10 the
transformation of parallel programs into nondeterministic programs is now
defined in a formal way. Also the references have been updated.

Acknowledgments

The authors of this book have collaborated, often together with other col-
leagues, on the topic of program verification since 1979. During this time
we have benefited very much from discussions with Pierre America, Jaco
de Bakker, Luc Bougé, Ed Clarke, Werner Damm, Hening Dierks, Eds-
ger W. Dijkstra, Nissim Francez, David Gries, Tony Hoare, Shmuel Katz,
Leslie Lamport, Hans Langmaack, Jay Misra, Cees Pierik, Andreas Podelski,
Amir Pnueli, Gordon Plotkin, Anders P. Ravn, Willem Paul de Roever, Fred
Schneider, Jonathan Stavi and Jeffery Zucker. Many thanks to all of them.

For the third edition Maarten Versteegh helped us with the migration of
files to adapt to the new style file. Alma Apt produced all the drawings in
this edition.

The bibliography style used in this book has been designed by Sam Buss;
Anne Troelstra deserves credit for drawing our attention to it.

Finally, we would like to thank the staff of Springer-Verlag, in particular
Simon Rees and Wayne Wheeler, for the efficient and professional handling
of all the stages of the production of this book. The TEX support group of
Springer, in particular Monsurate Rajiv, was most helpful.

Amsterdam, The Netherlands, Krzysztof R. Apt and Frank S. de Boer
Oldenburg, Germany, Ernst-Ridiger Olderog

xiv
Outlines of One-Semester Courses

PREREQUISITES: Chapter 2.

Course on Program Semantics

|C1ass of programs | Syntax|Semantics|
while programs 3.1 3.2
Recursive programs 4.1 4.2
Recursive programs

with parameters 5.1 5.2
Object-oriented programs 6.1 6.2
Disjoint parallel programs 7.1 7.2
Parallel programs with

shared variables 8.1, 8.2 8.3
Parallel programs with

synchronization 9.1 9.2
Nondeterministic programs| 10.1 10.2
Distributed programs 11.1 11.2
Fairness 12.1 12.2

Course on Program Verification

|C1ass of programs | Syntax|Semantics| Proof theory|
while programs 3.1 3.2 3.3, 34, 3.10
Recursive programs 4.1 4.2 43,44
Recursive programs

with parameters 5.1 5.2 5.3
Object-oriented programs 6.1 6.2(6.3, 6.4, 6.5, 6.6
Disjoint parallel programs 7.1 7.2 7.3
Parallel programs with

shared variables 8.1, 8.2 8.3 8.4, 8.5
Parallel programs with

synchronization 9.1 9.2 9.3
Nondeterministic programs 10.1 10.2 10.4
Distributed programs 11.1 11.2 11.4

Preface

Preface

Course Towards Object-Oriented Program

Verification

|C1ass of programs

|Syntax|Semantics|Proof theory|Case studies|

while programs 3.1 3.2 3.3, 34 3.9
Recursive programs 4.1 4.2 4.3,44 4.5
Recursive programs

with parameters 5.1 5.2 5.3 5.4
Object-oriented programs 6.1 6.2 6.3, 6.4 6.8

Course on Concurrent Program Verification

|C1ass of programs

| Syntax|Semantics | Proof theory|Case studies|

while programs 3.1 3.2 3.3, 34 3.9
Disjoint parallel programs 7.1 7.2 7.3 7.4
Parallel programs with

shared variables 8.1, 8.2 8.3 8.4, 8.5 8.6
Parallel programs with

synchronization 9.1 9.2 9.3 9.4, 9.5
Nondeterministic programs 10.1 10.2 10.4 10.5
Distributed programs 11.1 11.2 11.4 11.5

Course on Program Verification with

Emphasis on Case Studies

|C1ass of programs

| Syntax|Proof theory|Case studies|

while programs 3.1 3.3, 34 3.9
Recursive programs 4.1 4.3,44 4.5
Recursive programs

with parameters 5.1 5.4 5.4
Object-oriented programs 6.1 6.3-6.5 6.8
Disjoint parallel programs 7.1 7.3 7.4
Parallel programs with

shared variables 8.1, 8.2 8.4, 8.5 8.6
Parallel programs with

synchronization 9.1 9.3 9.4, 9.5
Nondeterministic programs|10.1, 10.3 10.4 10.5
Distributed programs 11.1 11.4 11.5

Xv

Contents

Endorsements. v
Foreword vii
Preface ix

Outlines of One-semester Coursesciiriiran. ... xiv

Part I In the Beginning

1 Introduction 3
1.1 An Example of a Concurrent Program 4
Solution 1 4
Solution 2 5
Solution 3 6
Solution 4 8
Solution 5 . ..o 9
Solution 6 i 10

1.2 Program Correctness.coviuniiniiininnenn.. 11
1.3 Structure of this Book 13
1.4 Automating Program Verification. 16
1.5 Assertional Methods in Practice 17
2 Preliminaries 19
2.1 Mathematical Notation 21
SO ot 21

Tuples ..o 22
Relations 23
Functions 23
SEQUENICES . vttt ettt e 24
StrINES . . vt 25

Proofs ... 26
Induction. 27
GIamAarSottt e e e et e e 29

2.2 Typed Expressions i 29
Y DeS e oo 29

xvii

xviii Contents
Variables 30
Constants 30
Expressions. i 31
Subscripted Variables i 32

2.3 Semantics of Expressions i 32
Fixed Structure 33

StateS . o e 34
Definition of the Semantics 35
Updates of States i 36

2.4 Formal Proof Systems. 38
2.5 ASSertions 39
2.6 Semantics of Assertionsoiiiiiiiia... 41
2.7 Substitution 42
Simultaneous Substitution 45

2.8 Substitution Lemma 47
2.9 Exercises 50
2.10 Bibliographic Remarks 51

Part II Deterministic Programs

3 while Programs 55
3.1 SYNEAX « .« ottt 57
3.2 Semantics 58
Properties of Semantics 62

3.3 Verification 63
Partial Correctness 65

Total Correctness.t 70
Decomposition 73
Soundness 73

3.4 Proof OQutlines 79
Partial Correctnesscoiiiii .. 79

Total Correctness. 83

3.5 Completeness 85
3.6 Parallel Assignmento ... 91
3.7 Failure Statement 94
3.8 Auxiliary Axioms and Rules 97
3.9 Case Study: Partitioning an Array 99
3.10 Systematic Development of Correct Programs 113
Summation Problem 115

3.11 Case Study: Minimum-Sum Section Problem............. 116
3. 12 EXEICISES .. oot e 121
3.13 Bibliographic Remarks 124

Contents xix

4 Recursive Programsiuiiiiiiiiiiiniiin.. 127
4.1 SYNEAX « .ot 129
4.2 Semantics 129

Properties of the Semantics 131
4.3 Verification i 132
Partial Correctnessc.iiiiri . 132
Total Correctness. ...t 134
Decomposition 137
Discussion 138
SOUNANESS .« . v vttt 139
4.4 Case Study: Binary Search 144
Partial Correctness i 145
Total Correctness., 147
4.5 Exercises 149
4.6 Bibliographic Remarks 150

5 Recursive Programs with Parameters 151
5.1 SYNMEAX .« . ottt 152
5.2 SemAanticst 154
5.3 Verification 157

Partial Correctness: Non-recursive Procedures............ 158
Partial Correctness: Recursive Procedures 162
Modularityo 165
Total Correctness. 165
Soundness 167
5.4 Case Study: Quicksort i 172
Formal Problem Specification 173
Properties of Partition 173
Auxiliary Proof: Permutation Property 174
Auxiliary Proof: Sorting Property 175
Total Correctness. . ..ot 180
5.5 Exercises 182
5.6 Bibliographic Remarks 182

6 Object-Oriented Programsc..coiuiuin... 185

6.1 SYNEAX .« . vttt 187
Local Expressionsooiiiiiiiiiiiina.. 187
Statements and Programs 188

6.2 SemantiCs 192
Semantics of Local Expressions......................... 192
Updates of States ... 194
Semantics of Statements and Programs.................. 195

6.3 ASSErtions 197
Substitution 199

6.4 Verification 200

XX

6.5

6.6

6.7

6.8

6.9
6.10
6.11

Contents

Partial Correctness 201
Total Correctness. 204
Adding Parameters i i i 206
Semantics 207
Partial Correctness, 208
Total Correctness.ot e 210
Transformation of Object-Oriented Programs 211
Soundness 214
Object Creation, 217
Semantics 218
ASSertions 219
Verification 223
Soundness 225
Case Study: Zero Search in Linked List.................. 226
Partial Correctness 226
Total Correctness. e 229
Case Study: Insertion into a Linked List................. 232
Exercises 238
Bibliographic Remarks oL 240

Part IIT Parallel Programs

7

Disjoint Parallel Programs c.co.... 245
7.1 SYNEAX .« . vt e 247
7.2 Semantics 248
Determinism 249
Sequentialization 252
7.3 Verificationo i 253
Parallel Composition.coviiiiiiiii ... 254
Auxiliary Variables i 256
Soundness 259
7.4 Case Study: Find Positive Element 261
7.5 Exercises 264
7.6 Bibliographic Remarks 266
Parallel Programs with Shared Variables.................. 267
8.1 Access to Shared Variables 269
8.2 SYNEAX « . vt 270
8.3 Semantics 271
Atomicityo 272
8.4 Verification: Partial Correctness 274
Component Programs i 274
No Compositionality of Input/Output Behavior 275
Parallel Composition: Interference Freedom 276

Auxiliary Variables Needed 279

Contents xxi

SOUNANESS .« . v vttt 282

8.5 Verification: Total Correctness 284

Component Programs i 284

Parallel Composition: Interference Freedom 286

SOUNANESS .« . vttt 288

Discussion 289

8.6 Case Study: Find Positive Element More Quickly......... 291

8.7 Allowing More Points of Interference.................... 294

8.8 Case Study: Parallel Zero Search 299

Step 1. Simplifying the program 299

Step 2. Proving partial correctness...................... 300

8.9 Exercises 303

8.10 Bibliographic Remarks 305

9 Parallel Programs with Synchronization 307

9.1 SYNEAX . o 309

9.2 SEMANtICS « . v vttt 310

9.3 Verification 311

Partial Correctness ..., 311

Weak Total Correctnessiiiiinan.... 313

Total Correctness.t 314

Soundness 316

9.4 Case Study: Producer/Consumer Problem 319

9.5 Case Study: The Mutual Exclusion Problem 324

Problem Formulation 324

Verification 326

A Busy Wait Solution. 327

A Solution Using Semaphores 331

9.6 Allowing More Points of Interference.................... 334

9.7 Case Study: Synchronized Zero Search 335

Step 1. Simplifying the Program.............. 336

Step 2. Decomposing Total Correctness 337

Step 3. Proving Termination 337

Step 4. Proving Partial Correctness 342

9.8 Exercises 344

9.9 Bibliographic Remarks 345
Part IV Nondeterministic and Distributed Programs

10 Nondeterministic Programsc......... 349

10.1 0 Syntax ..o 351

10,2 Semanticst 352

Properties of Semantics 353

10.3 Why Are Nondeterministic Programs Useful? 354

Symmetryo 355

xxii

11

12

Contents

Nondeterminism. i 395
Failures 356
Modeling Concurrencyooeuueuniinninnenn.. 356

10.4 Verification i 357
Partial Correctness, 357

Total Correctness.t 357
SOUNANESS .« oot v e 359

10.5 Case Study: The Welfare Crook Problem 360
10.6 Transformation of Parallel Programs 363
10.7 EXErcisest 368
10.8 Bibliographic Remarks 370
Distributed Programs c.iiiiiiiiiiiiii.. 373
111 Symbax . oe et 375
Sequential Processes i 375
Distributed Programs 376

11.2 Semanticso.it 380
11.3 Transformation into Nondeterministic Programs.......... 382
Semantic Relationship Between S and T(S).............. 382

Proof of the Sequentialization Theorem 385

11.4 Verification 390
Partial Correctness i 390

Weak Total Correctnesscoiiiiininao... 391

Total Correctness.t i 391

Proof Systems 392
Soundness 393

11.5 Case Study: A Transmission Problem 396
Step 1. Decomposing Total Correctness 397

Step 2. Proving Partial Correctness 397

Step 3. Proving Absence of Failures and of Divergence 399

Step 4. Proving Deadlock Freedom...................... 400

116 EXEICISesovt it e 402
11.7 Bibliographic Remarks 405
Fairness 407
12.1 The Concept of Fairness. 409
Selections and Runs, 410

Fair Nondeterminism Semantics 412

12.2 Transformational Semantics............................ 413
12.3 Well-Founded Structures 413
12.4 Random Assignment i, 414
Semantics 415
Verification 415

12.5 Schedulers. 419

The Scheduler FAIR 421

Contents xxiii

The Scheduler RORO o i 424

The Scheduler QUEUE 426

12.6 Transformation i, 427
12,7 Verification 430
Total Correctness.c..ouiiinn .. 430

SoUNANESS .« . oo 438

12.8 Case Study: Zero Search 442
12.9 Case Study: Asynchronous Fixed Point Computation 446
12,10 EXEICISES . .o vv ittt e e 452
12.11 Bibliographic Remarks 455

A Semantics 457
B Axioms and Proof Rules.............. 459
C Proof Systems 471
D Proof Outlines 475
Referenceso 477
Index 491
Author Index 497

