Abstract
In recent years, network anomaly detection has become an important area for both commercial interests as well as academic research. Applications of anomaly detection typically stem from the perspectives of network monitoring and network security. In network monitoring, a service provider is often interested in capturing such network characteristics as heavy flows, flow size distributions, and the number of distinct flows. In network security, the interest lies in characterizing known or unknown anomalous patterns of an attack or a virus.
In this chapter we review two main approaches to network anomaly detection: streaming algorithms, and machine learning approaches with a focus on unsupervised learning. We discuss the main features of the different approaches and discuss their pros and cons. We conclude the chapter by presenting some open problems in the area of network anomaly detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed T., Coates M., Lakhina A.: Multivariate Online Anomaly Detection Using Kernel Recursive Least Squares. Proc. of 26th IEEE International Conference on Computer Communications (2007)
Ahmed T., Oreshkin B., Coates M.: Machine Learning Approaches to Network Anomaly Detection. Proc. of International Measurement Conference (2007)
Andersen D., Feamster N., Bauer S., Balaskrishman H.: Topology inference from BGP routing dynamics. Proc. SIGCOM Internet Measurements Workshop, Marseille, France (2002)
Androulidakis G., Papavassiliou S.: Improving Network Anomaly Detection via Selective Flow-Based Sampling. Communications, IET. Vol. 2, no. 3, 399–409 (2008)
Barford P., Kline J., Plonka D., Ron A.: A Signal Analysis of Network Traffic Anomalies. Proc. of the 2nd ACM SIGCOMM Workshop on Internet Measurements, 71–82 (2002)
Cormode G., Korn F., Muthukrishnan S. D., Srivastava D.: Finding Hierarchical Heavy Hitters in Data Streams. Proc. of VLDB, Berlin, Germany (2003)
Cormode G., Muthukrishan S.: Improved Data Stream Summaries: The Count-Min Sketch and Its Applications. Tech. Rep. 03-20, DIMACS (2003)
Cormode G., Johnson T., Korn F., Muthukrishnan S. Spatscheck O., Srivastava D.: Holistic UDAFs at Streaming Speeds. Proc. of ACM SIGMOD, Paris, France (2004)
Cormode G., Korn F, Muthukrishnan S., Srivastava D.: Diamond in the Rough: Finding Hierarchical Heavy Hitters in Multi-Dimensional Data. Proc. of ACM SIGMOD, 155–166 (2004)
Cormode G., Muthukrishnan S.: What’s New: Finding Significant Differences in Network Data Streams. IEEE/ACM Trans. Netw. 13(6):1219–1232 (2005)
Cormode G., Korn. F., Muthukrishnan S., Srivastava D: Finding Hierarchical Heavy Hitters in Streaming Data. ACM Trans. Knowledge Discovery from Data 1(4) (2008)
Deshpande S., Thottan M., Sikdar B.: Early Detection of BGP Instabilities Resulting From Internet Worm Attacks. Proc. of IEEE Globecom, Dallas, TX (2004)
Duda R. O., Hart P., Stork D.: Pattern Classification, 2nd edn. John Willy and Sons (2001)
Duffield N.G., Lund C., Thorup M.: Properties and Prediction of Flow Statistics from Sampled Packet Streams. Proc. of ACM SIGCOMM Internet Measurement Workshop (2002)
Ensafi R., Dehghanzadeh S., Mohammad R., Akbarzadeh T.: Optimizing Fuzzy K-Means for Network Anomaly Detection Using PSO. Computer Systems and Applications, IEEE/ACS International Conference, 686–693 (2008)
Erjongmanee S., Ji C.: Inferring Internet Service Disruptions upon A Natural Disaster. To appear at 2nd International Workshop on Knowledge Discovery from Sensor Data (2008)
Estan C., Varghese G.: New Directions in Traffic Measurement and Accounting. Proc. of ACM SIGCOMM, New York, USA (2002)
Gao Y., Li Z., Chen Y.: A DoS Resilient Flow-level Intrusion Detection Approach for High-speed Networks, Proc. of IEEE International Conference on Distributed Computing Systems (2006)
Gu Y., McCallum A., Towsley D.: Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation. Proc. of IMC (2005)
Haffner P., Sen S., Spatscheck O., Wang D.: ACAS: Automated Construction of Application Signatures. Proc. of ACM SIGCOMM Workshop on Mining Network Data, Philadelphia, (2005)
Hajji H.: Statistical Analysis of Network Traffic for Adaptive Faults Detection. IEEE Trans. Neural Networks. Vol. 16, no. 5, 1053–1063 (2005)
He Q., Shayman M.A.: Using Reinforcement Learning for Pro-Active Network Fault Management. Proc. of Communication Technology. Vol. 1, 515–521 (2000)
Hood C.S., Ji C.: Proactive Network Fault Detection. IEEE Tran. Reliability. Vol. 46 3, 333–341 (1997)
Huang L., Nguyen X., Garofalakis M., Jordan M.I., Joseph A., Taft N.: Communication-Efficient Online Detection of Network-Wide Anomalies. Proc. of 26th Annual IEEE Conference on Computer Communications (2007)
Huang Y., Feamster N., Lakhina A., Xu J.: Diagnosing Network Disruptions with Network-Wide Analysis. Proc. of ACM SIGMETRICS (2007)
Ide T., Kashima H.: Eigenspace-Based Anomaly Detection in Computer Systems. Proc. of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, Seattle, 440–449 (2004)
Kim S.S., Reddy A.: Statistical Techniques for Detecting Traffic Anomalies Through Packet Header Data. Accepted by IEEE/ACM Tran. Networking (2008)
Kline K., Nam S., Barford P., Plonka D., Ron A.: Traffic Anomaly Detection at Fine Time Scales with Bayes Nets. To appear in the International Conference on Internet Monitoring and Protection (2008)
Krishnamurthy B., Sen S., Zhang Y., Chan Y.: Sketch-Based Change Detection: Methods, Evaluation, and Applications. Proc. of ACM SIGCOMM IMC, Florida, USA (2003)
Lall S., Sekar V., Ogihara M., Xu J., Zhang H.: Data Streaming Algorithms for Estimating Entropy of Network Traffic. Proc. of ACM SIGMETRICS (2006)
Lakhina A., Crovella M., Diot C.: Diagnosing Network-Wide Traffic Anomalies. Proc. of ACM SIGCOMM (2004)
Lakhina A., Papagiannaki K., Crovella M., Diot C., Kolaczyk E. N., Taft N.: Structural Analysis of Network Traffic Flows. Proc. of ACM SIGMETRICS (2004)
Lakhina A., Crovella M., Diot C.: Mining Anomalies Using Traffic Feature Distributions. Proc. of ACM SIGCOMM, Philadelphia, PA (2005)
Lee W., Stolfo F., Mok K.W.: A Data Mining Framework for Building Intrusion Detection Models. Proc. of In IEEE Symposium on Security and Privacy (1999)
Lee W., Xiang D.: Information-Theoretic Measures for Anomaly Detection. Proc. of IEEE Symposium on Security and Privacy (2001)
Leland W. E., Taqqu M. S., Willinger W., Wilson D. V.: On the Self-Similar Nature of Ethernet Traffic, Proc. of ACM SIGCOMM (1993)
Mai J., Chuah C., Sridharan A., Ye T., Zang H.: Is Sampled Data Sufficient for Anomaly Detection? Proc. of 6th ACM SIGCOMM conference on Internet measurement, Rio de Janeriro, Brazil. 165–176 (2006)
Mandjes M., Saniee I., Stolyar A. L.: Load Characterization and Anomaly Detection for Voice over IP traffic. IEEE Tran. Neural Networks. Vol.16, no. 5, 1019–1026 (2005)
Manku G. S., Motwani R.: Approximate Frequency Counts over Data Streams. Proc. of IEEE VLDB, Hong Kong, China (2002)
Maxion R. A., Tan K. M. C.: Benchmarking Anomaly-Based Detection Systems. Proc. International Conference on Dependable Systems and Networks (2000)
Miller E. L., Willsky A. S.: Multiscale, Statistical Anomaly Detection Analysis and Algorithms for Linearized Inverse Scattering Problems. Multidimensional Systems and Signal Processing. Vol. 8, 151–184 (1997)
Ricciato F., Fleischer W.: Bottleneck Detection via Aggregate Rate Analysis: A Real Case in a 3G Network. Proc. IEEE/IFIP NOMS (2004)
Ringberg H., Soule A., Rexford J., Diot C.: Sensitivity of PCA for Traffic Anomaly Detection. Proc. of ACM SIGMETRICS (2007)
Rish I., Brodie M., Sheng M., Odintsova N., Beygelzimer A., Grabarnik G., Hernandez K.: Adaptive Diagnosis in Distributed Systems. IEEE Tran. Neural Networks. Vol. 16, No. 5, 1088–1109 (2005)
Schweller R., Gupta A., Parsons E., Chen Y.: Reversible Sketches for Efficient and Accurate Change Detection over Network Data Streams. Proc. of IMC, Italy (2004)
Schweller R., Li Z., Chen Y., Gao Y., Gupta A., Zhang Y., Dinda P., Kao M., Memik G.: Reverse hashing for High-Speed Network Monitoring: Algorithms, Evaluation, and Applications. Proc. of IEEE INFOCOM (2006)
Soule A., Salamatian K., Taft N.: Combining Filtering and Statistical Methods for Anomaly Detection. Proc. of IMC Workshop (2005)
Steinder M., Sethi A.S.: Probabilistic Fault Localization in Communication Systems Using Belief Networks. IEEE/ACM Trans. Networking. Vol. 12, No. 5, 809–822 (2004)
Tavallaee M., Lu W., Iqbal S. A., Ghorbani A.: A Novel Covariance Matrix Based Approach for Detecting Network Anomalies. Communication Networks and Services Research Conference (2008)
Thottan M., Ji C.: Anomaly Detection in IP Networks. IEEE Trans. Signal Processing, Special Issue of Signal Processing in Networking, Vol. 51, No. 8, 2191–2204 (2003)
Thottan M., Ji C.: Proactive Anomaly Detection Using Distributed Intelligent Agents. IEEE Network. Vol. 12, no. 5, 21–27 (1998)
Venkataraman S., Song D., Gibbons P., Blum A.: New Streaming Algorithms for Fast Detection of Superspreaders. Proc. of Network and Distributed Systems Security Symposium (2005)
Venkataraman S., Caballero J., Song D., Blum A., Yates J.: Black-box Anomaly Detection: Is it Utopian?” Proc. of the Fifth Workshop on Hot Topics in Networking (HotNets-V), Irvine, CA (2006)
Xie Y., Kim H.A., O’Hallaron D. R., Reiter M. K., Zhang H.: Seurat: A Pointillist Approach to Anomaly Detection. Proc. of the International Symposium on Recent Advances in Intrusion Detection (RAID) (2004)
Wang H., Zhang D., Shin K. G.: Detecting SYN flooding attacks. Proc. of IEEE INFOCOM (2002)
Xu J.: Tutorial on Network Data Streaming. SIGMETRICS (2007)
Yang Y., Deng F., Yang H.: An Unsupervised Anomaly Detection Approach using Subtractive Clustering and Hidden Markov Model. Communications and Networking in China. 313–316 (2007)
Yeung D. S., Jin S., Wang X.: Covariance-Matrix Modeling and Detecting Various Flooding Attacks. IEEE Tran. Systems, Man and Cybernetics, Part A, vol. 37, no. 2, 157–169 (2007)
Zhang Y., Singh S., Sen S., Duffield N., Lund C.: Online Identification of Hierarchical Heavy Hitters: Algorithms, Evaluation and Applications. Proc. of ACM SIGCOMM conference on Internet measurement. 101–114 (2004)
Zhang J., Rexford J., Feigenbaum J.: Learning-Based Anomaly Detection in BGP Updates. Proc. of ACM SIGCOMM MineNet workshop (2005)
Zhang Y., Ge Z., Greenberg A., Roughan M.: Network Anomography. Proc. of ACM/USENIX Internet Measurement Conference (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London Limited
About this chapter
Cite this chapter
Thottan, M., Liu, G., Ji, C. (2010). Anomaly Detection Approaches for Communication Networks. In: Cormode, G., Thottan, M. (eds) Algorithms for Next Generation Networks. Computer Communications and Networks. Springer, London. https://doi.org/10.1007/978-1-84882-765-3_11
Download citation
DOI: https://doi.org/10.1007/978-1-84882-765-3_11
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-84882-764-6
Online ISBN: 978-1-84882-765-3
eBook Packages: Computer ScienceComputer Science (R0)