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On CSP and the Algebraic Theory of Effects

Rob van Glabbeek and Gordon Plotkin∗

Abstract We consider CSP from the point of view of the algebraic theoryof effects,
which classifies operations as effectconstructorsand effectdeconstructors; it also
provides a link with functional programming, being a refinement of Moggi’s sem-
inal monadic point of view. There is a natural algebraic theory of the constructors
whose free algebra functor is Moggi’s monad; we illustrate this by characterising
free and initial algebras in terms of two versions of the stable failures model of CSP,
one more general than the other. Deconstructors are dealt with as homomorphisms
to (possibly non-free) algebras.

One can view CSP’s action and choice operators as constructors and the rest,
such as concealment and concurrency, as deconstructors. Carrying this programme
out results in taking deterministic external choice as constructor rather than gen-
eral external choice. However, binary deconstructors, such as the CSP concurrency
operator, provide unresolved difficulties. We conclude by presenting a combination
of CSP with Moggi’s computationalλ -calculus, in which the operators, including
concurrency, are polymorphic. While the paper mainly concerns CSP, it ought to be
possible to carry over similar ideas to other process calculi.
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1 Introduction

We examine Hoare’s CSP [BHR84, Hoa85, Ros98] from the point of view of the
algebraic theory of effects [PP02, PP04, HPP06, PPr09], a refinement of Moggi’s
seminal ‘monads as notions of computation’ [Mog89, Mog91, BHM02]. This is a
natural exercise as the algebraic nature of both points to a possibility of commonal-
ity. In the algebraic theory of effects operations do not allhave the same character.
Some are effectconstructors: they create the effects at hand; some are effectdecon-
structors: they respond to effects created. For example, raising an exception creates
an effect—the exception raised—whereas exception-handling responds to effects—
exceptions that have been raised. It may therefore be interesting, and even useful,
to classify CSP operators as constructors or deconstructors. Considering CSP and
the algebraic theory of effects together also raises the possibility of combining CSP
with functional programming in a principled way, as Moggi’smonadic approach
provides a framework for the combination of computational effects with functional
programming. More generally, although we mainly consider CSP, a similar exer-
cise could be undertaken for other process calculi as they have a broadly similar
algebraic character.

The theory of algebraic effects starts with the observationthat effect constructors
generally satisfy natural equations, and Moggi’s monadT is precisely the free alge-
bra monad for these equations (an exception is the continuations monad which is of
a different character). Effect deconstructors are treatedas homomorphisms from the
free algebra to another algebra, perhaps with the same carrier as the free algebra but
with different operations. These operations can be given bycombinations of effect
constructors and previously defined deconstructors. The situation is much like that
of primitive recursive definitions, although we will not present a formal definitional
scheme.

We mainly consider that part of CSP containing action, internal and external
choice, deadlock, relabelling, concealment, concurrencyand interleaving, but not,
for example, recursion (we do, albeit briefly, consider the extension with termi-
nation and sequencing). The evident constructors are then action prefix, and the
two kinds of choice, internal and external, the latter together with deadlock. The
evident deconstructors are relabelling, concealment, concurrency and interleaving.
There is, however, a fly in the ointment, as pointed out in [PPr09]. Parallel opera-
tors, such as CSP’s concurrency and interleaving, are naturally binary, and respond
to effects in both arguments. However, the homomorphic approach to deconstruc-
tors, as sketched above, applies only to unary deconstructors, although it is possible
to extend it to accommodate parameters and simultaneous definitions. Nonetheless,
the natural definitions of concurrency and interleaving do not fall within the homo-
morphic approach, even in the extended sense. This problem has nothing to do with
CSP: it applies to all examples of parallelism of which we areaware.

Even worse, when we try to carry out the above analysis for CSP, it seems that
the homomorphic approach cannot handle concealment. The difficulty is caused by
the fact that concealment does not commute with external choice. Fortunately this
difficulty can be overcome by changing the effect constructors: we remove external
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choice and action prefix and replace them by the deterministic external choice oper-
ator(a1 → P(a1) | . . . | an → P(an)), where theai are all different. Binary external
choice then becomes a deconstructor.

With that we can carry out the program of analysis, finding only the expected dif-
ficulty in dealing with concurrency and interleaving. However, it must be admitted
that then-ary operators are somewhat clumsy to work with, and it is at least a priori
odd to take binary external choice as a deconstructor. On theother hand, in [Hoa85,
Section 1.1.3] Hoare writes:

The definition of choice can readily be extended to more than two alternatives, e.g.,

(x→ P | y→ Q | . . . | z→ R)

Note that the choice symbol| is not an operator on processes; it would be syntactically
incorrect to writeP | Q, for processesP andQ. The reason for this rule is that we want to
avoid giving a meaning to

(x→ P | x→ Q)

which appears to offer a choice of first event, but actually fails to do so.

which might be read as offering some support to a treatment which takes determin-
istic external choice as a primitive (here = constructor), rather than general external
choice. On our side, we count it as a strength of the algebraictheory of effects that it
classifies effect-specific operations and places constraints on them: that they either
belong to the basic theory or must be defined according to a scheme that admits
inductive proofs.

Turning to the combination with functional programming, consider Moggi’s
computationalλ -calculus. Just as one accommodates imperative programming
within functional programming by treating commands as expressions of typeunit ,
so it is natural to treat our selection of CSP terms as expressions of typeempty as
they do not terminate normally, only in deadlock. For process languages such as
ACP [BK85, BK86] which do have the possibility of normal termination, or CSP
with such a termination construct, one switches to regarding process terms as ex-
pressions of typeunit , when a sequencing operator is also available.

As we have constructors for everyT(X), it is natural to treat them as polymorphic
constructs, rather than just as process combinators. For example, one could have a
binary construction for internal choice, with typing rule:

M :σ N :σ
M⊓N :σ

It is natural to continue this theme for the deconstructors,as in:

M :σ
M\a:σ

M :σ N :τ
M ||N :σ × τ

where the thought behind the last rule is thatM andN are evaluated concurrently,
terminating normally only if they both do, when the pair of results returned individ-
ually by each is returned.
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In the case of CSP a functional programming language CSPM incorporating CSP
processes has been given by Scattergood [Sca]; it is used by most existing CSP tools
including the Failures Divergences Refinement Checker (FDR), see [Ros94]. Scat-
tergood’s CPSM differs from our proposal in several respects. Most significantly,
processes are not treated on a par with other expressions: inparticular they cannot
be taken as arguments in functions, and CSP constructors anddeconstructors are
only available for processes. It remains to be seen if such differences are of practi-
cal relevance.

In Section 3 we take deadlock, action, binary internal and external choice as the
constructors. We show, in Theorem 3.4, that, with the standard equational theory,
the initial algebra is the ‘finitary part’ of the original Brookes-Hoare-Roscoe fail-
ures model [BHR84]; which is known to be isomorphic to the finitary, divergence-
andX-free part of the failures/divergences model, as well as thefinitary, divergence-
andX-free part of the stable failures model, both of which are described in [Ros98].
In Section 4 we go on to consider effect deconstructors, arriving at the difficulty
with concealment and illustrating the problems with parallel operators in the (sim-
pler) context of Milner’s synchronisation trees. A reader interested in the problem
of dealing with parallel operators algebraically need onlyread this part, together
with [PPr09].

We then backtrack in Section 5, making a different choice of constructors, as dis-
cussed above, and giving another characterisation of the finitary failures model as
an initial algebra in Theorem 5.2. With that, we can carry outour programme, fail-
ing only where expected: with the binary deconstructors. InSection 6 we add a zero
for the internal choice operator to our algebra; this can be interpreted as divergence
in the stable failures model, and permits the introduction of a useful additional de-
terministic external choice constructor. Armed with this tool, in Section 7, we look
at the combination of CSP and functional programming, following the lines hinted
at above. In order to give a denotational semantics we need, in Theorem 7.4, to
characterise the free algebras rather than just the initialone.

As remarked above, termination and sequencing are accommodated within func-
tional programming via the typeunit ; in Section 7.1 we therefore also give a brief
treatment of our fragment of CSP extended with termination and sequencing, mod-
elling it in the free algebra over the one-point set.

The concluding Section 8 contains a brief discussion of the general question of
combining process calculi, or parallelism with a global store, with functional pro-
gramming. The case of CSP considered here is just one exampleof the many possi-
ble such combinations. Throughout this paper we do not consider recursion; this en-
ables us to work within the category of sets. A more complete treatment would deal
with recursion working within, say, the category ofω-cpos (i.e., partial orders with
lubs of increasingω-sequences) and continuous functions (i.e., monotone functions
preserving lubs of increasingω-sequences). This is discussed further in Section 8.
The appendix gives a short presentation of Moggi’s computationalλ -calculus.
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2 Technical preliminaries

We give a brief sketch of finitary equational theories and their free algebra monads.
For a fuller explanation see, e.g., [Bor94, AGM95]. Finitary equational theories Th
are derived from a given set of axioms, written using a signatureΣ consisting of a
set of operation symbols op :n, together with their aritiesn ≥ 0. One forms terms
t from the signature and variables and the axioms then consistof equationst = u
between the terms; there is a natural equational logic for deducing consequences of
the axioms; and the theory consists of all the equations derivable from the axioms.
A groundequation is one where both terms areclosed, meaning that they contain
no variables.

For example, we might consider the fragment of CSP with signature�:2,Stop:0
and the following axioms for a semilattice (the first three axioms) with a zero (the
last):

Associativity (x�y)�z= x� (y�z)
Commutativity x�y= y�x
Idempotence x�x= x
Zero x�Stop= x

A Σ -algebrais a structureA = (X,(opA :Xn →X)op:n∈Σ ); we say thatX is thecar-
rier of A and the opA are itsoperations. We may omit the subscript on operations
when the algebra is understood. When we are thinking of an algebra as an algebra
of processes, we may say ‘operator’ rather than ‘operation.’ A homomorphism be-
tween two algebras is a map between their carriers respecting their operations; we
therefore have a category ofΣ -algebras.

Given such aΣ -algebra, every termt has adenotation[[t]](ρ), an element of
the carrier, given an assignmentρ of elements of the carrier to every variable; we
often confuse terms with their denotation. The algebrasatisfiesan equationt = u if
t andu have the same denotation for every such assignment. IfA satisfies all the
axioms of a theory Th, it is called a Th-algebra; the Th-algebras form a subcategory
of the category ofΣ -algebras. Any equation provable from the axioms of a theory
Th is satisfied by any Th-algebra. We say that a theory Th is(ground) equationally
completewith respect to a Th-algebra if a (ground) equation is provable from Th if,
and only if, it is satisfied by the Th-algebra.

Any finitary equational theory Th determines a free algebra monadTTh on the
category of sets, as well as operations

opX :TTh(X)n → TTh(X)

for any setX and op :n∈ Σ , such that(TTh(X),(opX :Xn →X)op:n∈Σ ) is the free Th-
algebra overX. AlthoughTTh(X) is officially just a set, the carrier of the free algebra,
we may also useTTh(X) to denote the free algebra itself. In the above example the
monad is the finite powerset monad:

F (X) = {u⊆ X | u is finite}
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with �X andStopX being union and the empty set, respectively.

3 A first attempt at analysing CSP

We consider the fragment of CSP with deadlock, action prefix,internal and external
choice, relabelling and concealment, and concurrency and interleaving. Working
over a fixed alphabetA of actions, we consider the following operation symbols:

Deadlock
Stop :0

Action
a→− :1 (a∈ A)

Internal and External Choice

⊓,� :2

Relabelling and Concealment

f (−),−\a:1

for any relabelling function f: A → A and actiona. If A is infinite, this makes the
syntax infinitary; as that causes us no problems, we do not avoid it.

Concurrency and Interleaving

||, ||| :2

The signature of our (first) equational theory CSP(�) for CSP only has operation
symbols for the subset of these operators which are naturally thought of as construc-
tors, namely deadlock, action and internal and external choice. Its axioms are those
given by de Nicola in [DeN85]. They are largely very natural and modular, and are
as follows:

• �,Stop is a semilattice with a zero (i.e., the above axioms for a semilattice with
a zero).

• ⊓ is a semilattice (i.e., the axioms stating the associativity, commutativity and
idempotence of⊓).

• � and⊓ distribute over each other:

x� (y⊓z) = (x�y)⊓ (x�z) x⊓ (y�z) = (x⊓y)� (x⊓z)

• Actions distribute over⊓:

a→ (x⊓y) = a→ x⊓a→ y
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and:
a→ x�a→ y= a→ x⊓a→ y

All these axioms are mathematically natural except the lastwhich involves a rela-
tionship between three different operators.

We adopt some useful standard notational abbreviations. For n ≥ 1 we writedn
i=1 ti to abbreviatet1 ⊓ . . .⊓ tn, intendingt1 whenn = 1. We assume that paren-

theses associate to the left; however as⊓ is associative, the choice does not matter.
As ⊓ is a semilattice, we can even index over nonempty finite sets,as in

d
i∈I ti ,

assuming some standard ordering of theti without repetitions. As� is a semilat-
tice with a zero, we can adopt analogous notations

en
i=1ti and

e
i∈I ti but now also

allowingn to be 0 andI to be /0.
As⊓ is a semilattice we can define a partial order for which it is the greatest lower

bound by writingt ⊑ u as an abbreviation fort⊓u= t; then, as� distributes over⊓,
it is monotone with respect to⊑: that is, ifx⊑ x′ andy⊑ y′ thenx�y⊑ x′�y′. (We
mean all this in a formal sense, for example, that ift ⊑ u andu ⊑ v are provable,
so ist ⊑ v, etc.) We note the following, which is equivalent to the distributivity of
⊓ over�, given that⊓ and� are semilattices, and the other distributivity, that�
distributes over⊓:

x⊓ (y�z) = x⊓ (y�z)⊓ (x�y) (1)

The equation can also be written asx⊓ (y�z) ⊑ (x�y). Using this one can derive
another helpful equation:

(x�a→ z)⊓ (y�a→ w) = (x�a→ (z⊓w))⊓ (y�a→ (z⊓w)) (2)

We next rehearse the original refusal sets model of CSP, restricted to finite pro-
cesses without divergence; this provides a convenient context for identifying the
initial model of CSP(�) in terms of failures.

A failure (pair) is a pair(w,W) with w ∈ A∗ andW ⊆fin A. For every setF of
failure pairs, we define its set oftracesto be

trF = {w | (w, /0) ∈ F}

and for everyw∈ trF we define its set offuturesto be:

futF(w) = {a | wa∈ trF}

With that arefusal set F(aka afailure set) is a set of failure pairs, satisfying the
following conditions:

1. ε ∈ trF

2. wa∈ trF ⇒ w∈ trF

3. (w,W) ∈ F ∧V ⊆W ⇒ (w,V) ∈ F
4. (w,W) ∈ F ∧a /∈ futF ⇒ (w,W∪{a}) ∈ F

A refusal set isfinitary if its set of traces is finite.
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The collection of finitary refusal sets can be turned into a CSP(�)-algebraR f by
the following standard definitions of the operators:

StopRf
= {(ε,W) |W ⊆fin A}

a→Rf F = {(ε,W) | a /∈W}∪{(aw,W) | (w,W) ∈ F}

F ⊓Rf G = F ∪G
F �Rf G = {(ε,W) | (ε,W) ∈ F ∩G}∪{(w,W) | w 6= ε, (w,W) ∈ F ∪G}

The other CSP operation symbols also have standard interpretations over the collec-
tion of finitary refusal sets:

f (F) = {( f (w),W) | (w, f−1(W)∩ futF(w)) ∈ F}
F\a = {(w\a,W) | (w,W∪{a}) ∈ F}
F || G = {(w,W∪V) | (w,W) ∈ F, (w,V) ∈ G}
F ||| G = {(w,W) | (u,W) ∈ F, (v,W) ∈ G, w∈ u|v}

with the evident action off on sequences and sets of actions, and wherew\a is
obtained fromw by removing all occurrences ofa, and whereu | v is the set of
interleavings ofu andv.

Lemma 3.1.Let F be a finitary refusal set. Then for every w∈ trF there are
V1, . . . ,Vn ⊆ futF(w), including futF(w), such that(w,W) ∈ F iff W ∩Vi = /0 for
some i∈ {1, . . . ,n}.

Proof. The closure conditions imply that(w,W) is in F iff (w,W∩ futF(w)) is. Thus
we only need to be concerned about pairs(w,W) with W⊆ futF(w). Now, as futF(w)
is finite, for any relevant(w,W)∈ F , of which there are finitely many, we can takeV
to be futF(w)\W, and we obtain finitely many such sets. As(w, /0)∈ F, these include
futF(w). ⊓⊔

Lemma 3.2.All finitary refusal sets are definable by closedCSP(�) terms.

Proof. Let F be a finitary refusal set. We proceed by induction on the length of
the longest trace inF . By the previous lemma there are setsV1, . . . ,Vn, including
futF(ε), such that(ε,W) ∈ F iff W∩Vi = /0 for somei ∈ {1, . . . ,n}. DefineFa, for
a∈ futF(ε), by:

Fa = {(w,W) | (aw,W) ∈ F}

Then it is not hard to see that eachFa is a finitary refusal set, and that

F =
l

i

m

a∈Vi

a→ Fa

As the longest trace inFa is strictly shorter than the longest one inF , the proof
concludes, employing the induction hypothesis.⊓⊔

We next recall some material from de Nicola [DeN85]. LetL be a collection of
sets; we say it issaturatedif wheneverL⊆ L′ ⊆

⋃

L , for L ∈L thenL′ ∈L . Then
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a closed CSP(�)-termt is in normal formif it is of the form:

l

L∈L

m

a∈L

a→ ta

whereL is a finite non-empty saturated collection of finite sets of actions and each
term ta is in normal form. Note that the concept of normal form is defined recur-
sively.

Proposition 3.3.CSP(�) is ground equationally complete with respect toR f .

Proof. Every term is provably equal in CSP(�) to a term in normal form. For the
proof, follow that of Proposition A6 in [DeN85]; alternatively, it is a straightforward
induction in which equations (1) and (2) are helpful. Further, it is an immediate
consequence of Lemma 4.8 in [DeN85] that if two normal forms have the same
denotation inR f then they are identical (and Lemma 7.2 below establishes a more
general result). The result then follows.⊓⊔

Theorem 3.4.The finitary refusal sets algebraR f is the initialCSP(�) algebra.

Proof. Let the initial such algebra be I. There is a unique homomorphismh:I →R f .
By Lemma 3.2,h is a surjection. By the previous proposition,R f is complete for
equations between closed terms, and soh is an injection. Soh is an isomorphism,
completing the proof. ⊓⊔

4 Effect deconstructors

In the algebraic theory of effects, the semantics of effectdeconstructors, such as
exception handlers, is given using homomorphisms from freealgebras. In this case
we are interested inTCSP(�)( /0). This is the initial CSP(�) algebra,R f , so given a
CSP(�) algebra:

A = (TCSP(�)( /0),⊓A ,StopA ,(a→A ),�A )

there is a unique homomorphism:

h:R f → A

Relabelling We now seek to definef (−) :TCSP(�)( /0)→ TCSP(�)( /0) homomorphi-
cally. Define an algebraRl onTCSP(�)( /0) by putting, for refusal setsF,G:

StopRl = StopRf

(a→Rl F) = ( f (a)→Rf F)

F ⊓Rl G= F ⊓Rf G F �Rl G= F �Rf G
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One has to verify this gives a CSP(�)-algebra, which amounts to verifying that the
two action equations hold, for example that, for allF,G:

a→Rl (F ⊓Rl G) = (a→Rl F)⊓Rl (a→Rl G)

which is equivalent to:

f (a)→Rf (F ⊓Rf G) = ( f (a)→Rf F)⊓Rf ( f (a)→Rf G)

We therefore have a unique homomorphism

R f
hRl−→ Rl

and so the following equations hold over the algebraR f :

hRl(Stop) = Stop

hRl(a→ F) = f (a)→ hRl(F)

hRl(F ⊓G) = hRl(F)⊓hRl(G) hRl(F �G) = hRl(F)�hRl(G)

Informally one can use these equations to definehRl by a ‘principle of equational
recursion,’ but one must remember to verify that the implicit algebra obeys the re-
quired equations.

We usehRl to interpret relabelling. We then immediately recover the familiar
CSP laws:

f (Stop) = Stop

f (a→ x) = f (a)→ f (x)

f (x⊓y) = f (x)⊓ f (y) f (x�y) = f (x)� f (y)

which we now see to be restatements of the homomorphism of relabelling.

Concealment There is a difficulty here. We do not have that

(F �G)\a= F\a �G\a

but rather have the following two equations (taken from [DeN85]):

((a→ F)�G)\a= F\a⊓ ((F �G)\a) (3)

(

nm

i=1

aiFi)\a=

nm

i=1

ai(Fi\a) (4)

where noai is a. Furthermore, there is no direct definition of concealment via an
equational recursion, i.e., there is no suitable choice of algebra,�A etc. For, if
there were, we would have:
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(F �G)\a= F\a �A G\a (5)

So if a does not occur in any trace ofF ′ or G′ we would have:

F ′ �A G′ = F ′\a �A G′\a
= (F ′ �G′)\a
= F ′ �G′

but, returning to equation (5),a certainly does not occur in any trace ofF\a or G\a
and so we would have:

(F �G)\a = F\a �A G\a
= F\a �Rf G\a

which is false. It is conceivable that although there is no direct homomorphic defi-
nition of concealment, there may be an indirect one where other functions (possibly
with parameters—see below) are defined homomorphically andconcealment is de-
finable as a combination of those.

4.1 Concurrency operators

Before trying to recover from the difficulty with concealment, we look at a further
difficulty, that of accommodating binary deconstructors, particularly parallel oper-
ators. We begin with a simple example in a strong bisimulation context, but rather
than a concurrency operator in the style of CCS we consider one analogous to CSP’s
||.

We take as signature a unary action prefix,a.−, for a ∈ A, a nullaryNIL and
a binary sum+. The axioms are that+ is a semilattice with zeroNIL ; the initial
algebra is then that of finite synchronisation treesST. Every synchronisation treeτ
has a finite depth and can be written as

n

∑
i=1

ai.τi

for somen≥ 0, where theτi are also synchronisation trees (of strictly smaller depth),
and where no pair(ai ,τi) occurs twice. The order of writing the summands makes
no difference to the tree denoted.

One can define a binary synchronisation operator|| on synchronisation treesτ =

∑i ai.τi andτ ′ = ∑ j b j .τ j by induction on the depth ofτ (or τ ′):

τ || τ ′ = ∑
ai =b j

ai.(τi || τ ′j )

Looking for an equational recursive definition of||, one may try a ‘mutual (paramet-
ric) equational recursive definition’ of|| and a certain family||a with x,y,z varying
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overST:
NIL || z = NIL

(x+ y) || z= (x || z)+ (y || z)
a.x || z = x ||a z

and

z ||a NIL = NIL

z ||a (x+ y) = (z ||a x)+ (z ||a y)

z ||a b.x =

{

a.(z || x) (if b= a)
NIL (if b 6= a)

Unfortunately, this definition attempt is not an equationalrecursion. Mutual (para-
metric) equational recursions are single ones to an algebraon a product. Here we
wish a map:ST→ ST×ST. Informally we would write such clauses as:

〈(x+ y) || z , z ||a (x+ y)〉= 〈(x || z)+ (y || z) , (z ||a x)+ (z ||a y)〉

with the recursion variables, herex,y, on the left for|| and on the right for||a.
However:

〈a.x || z , z ||a b.x〉=

{

〈x ||a z , a.(z || x)〉 (if b= a)
〈x ||a z , NIL〉 (if b 6= a)

does not respect this discipline: the recursion variable, here x, (twice) switches
places with the parameterz.

We are therefore caught in a dilemma. One can show, by induction on the depth
of synchronisation trees, that the above definitions, viewed as equations for|| and||a

have a unique solution: the expected synchronisation operator ||, and the functions
||a defined on synchronisation treesτ andτ ′ = ∑ j b j .τ j by:

τ ||a τ ′ = ∑
b j =a

a.(τ || τ j)

So we have a correct definition not in equational recursion format. So we must either

• find a different correct definition in the equational recursion format

or else

• find another algebraic format into which the correct definition fits.

When we come to the CSP parallel operator we do not even get as far as we did
with synchronisation trees. The problem is like that with concealment: the distribu-
tive equation:

(F �F ′) || G= (F || G)� (F ′ || G)

does not hold. One can show that there is no definition of|| analogous to the above
one for synchronisation trees, i.e., there is no suitable choice of algebra,�A etc, and
functions||a. The reason is that there is no binary operator�′ on (finitary) failure
sets such that, for allF,G,H we have:
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(F �F ′) || G= (F || G)�′ (F ′ || G)

For suppose, for the sake of contradiction, that there is such an operator. Then, fixing
F andF ′, chooseG such thatF || G= F, F ′ || G= F ′ and(F �F ′) || G= (F �F ′).
Then, substituting into the above equation, we obtain thatF �F ′ = F �′ F ′ and so
the above equation yields distributivity, which, in fact, does not hold. As in the case
of concealment, there may nonetheless be an indirect definition of ||.

A similar difficulty obtains for the CSP interleaving operator. It too does not
commute with�, and it too does not have any direct definition (the argument is like
that for the concurrency operator but a little simpler, taking G = Stop). As in the
case of the concurrency operator, there may be an indirect definition.

5 Another choice of CSP effect constructors

Equations (3) and (4) do not immediately suggest a recursivedefinition of conceal-
ment. However, one can show that, for distinct actionsai (i = 1,n), the following
equation holds between refusal sets:

(

nm

i=1

ai → Fi)\a j = (Fj\a j)⊓ ((Fj\a j)�
m

i 6= j

ai → (Fi\a j))

where 1≤ j ≤ n. Taken together with equation (4), this suggests a recursive defini-
tion in terms of deterministic external choice. We therefore now change our choice
of constructors, replacing binary external choice, actionprefix and deadlock by de-
terministic external choice.

So as our second signature for CSP we take a binary operation symbol ⊓ of
internal choice and, for anydeterministic action sequence~a (i.e., any sequence of
actionsai (i = 1,n), with theai all different andn≥ 0), ann-ary operation symbole

~a of deterministic external choice. We write
e

~a(t1, . . . , tn) as
en

i=1aiti although it
is more usual to use Hoare’s notation(a1 → t1 | · · · | an → tn); we also useStop to
abbreviate

e
~a().

We have the usual semilattice axioms for⊓. Deterministic external choice is
commutative, in the sense that:

m

i

aixi =
m

i

aπ(i)xπ(i)

for any permutationπ of {1, . . . ,n}. Given this, we are justified in writing determin-
istic external choices over finite, possibly empty, sets of actions,

e
a∈I ata, assuming

some standard ordering of pairs(a, ta) without repetitions.
For the next axiom it is convenient to write(a1 → t1)�

en
i=2aiti for

en
i=1aiti (for

n≥ 0). The axiom states that deterministic external choice distributes over internal
choice:
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(a1 → (x⊓x′)) �
nm

i=2

aixi =

(

(a1 → x) �
nm

i=2

aixi

)

⊓

(

(a1 → x′) �
nm

i=2

aixi

)

This implies that deterministic external choice is monotone with respect to⊑.
We can regard a, possibly nondeterministic, external choice, in which theai need

not be all different, as an abbreviation for a deterministicone, via:

m

i

aiti =
m

b∈{a1,...,an}

b





l

ai=b

ti



 (6)

With that convention we may also writea1 → t1 �
en

i=2aiti even whena1 is some
ai , for i > 1. We can now write our final axiom:

(

m

i

aixi

)

⊓



(b1 → y1)�
nm

j=2

b jy j



 ⊑ (b1 → y1) �
m

i

aixi (7)

Restricting the external choice(b1 → y1)�
e

j b jy j to be deterministic gives an
equivalent axiom, as does restricting

e
i aixi (in the presence of the others).

Let us call this equational theory CSP(|). The finitary refusal sets form a CSP(|)-
algebraRdf with the evident definitions:

F ⊓Rdf G = F ∪G
(
e

~a)Rdf (F1, . . . ,Fn) = {(ε,W) |W∩{a1, . . . ,an}= /0}∪{(aiw,W) | (w,W) ∈ Fi}

Theorem 5.1.The finitary refusal sets algebraRdf is complete for equations be-
tween closedCSP(|) terms.

Proof. De Nicola’s normal form can be regarded as written in the signature of
CSP(|), and a straightforward induction proves that every CSP(|) term can be re-
duced to such a normal form using the above axioms. But two such normal forms
have the same denotation whether they are regarded as CSP(�) or as CSP(|) terms,
and in the former case, by Lemma 4.8 of [DeN85], they are identical. ⊓⊔

Theorem 5.2.The finitary refusal sets algebraRdf is the initialCSP(|) algebra.

Proof. Following the proof of Lemma 3.2 we see that every finitary refusal set is
definable by a closed CSP(|) term. With that, initiality follows from the above com-
pleteness theorem, as in the proof of Theorem 3.4.⊓⊔

Turning to the deconstructors, relabelling again has a straightforward homomor-
phic definition: given a relabelling functionf :A→ A, hRl :TCSP(|)( /0)→ TCSP(|)( /0)
is defined homomorphically by:

hRl(F ⊓G) = hRl(F)⊓hRl(G)
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hRl(
m

i

aiFi) =
m

i

f (ai)hRl(Fi)

As always one has to check that the implied algebra satisfies the equations, here
those of CSP(|).

There is also now a natural homomorphic definition of concealment,−\a, but,
surprisingly perhaps, one needs to assume that� is available. For everya∈ A one
definesha :TCSP(|)( /0)→ TCSP(|)( /0) homomorphically by:

ha(F ⊓G) = ha(F)⊓ha(G)

ha

(

nm

i=1

aiFi

)

=

{

ha(Fj)⊓ (ha(Fj)�
e

i 6= j aiha(Fi)) (if a= a j , where1≤ j ≤ n)en
i=1aiha(Fi) (if a 6= anyai)

Verifying that the implicit algebra obeys satisfies the required equations is quite a
bit of work. We record the result, but omit the calculations:

Proposition 5.3.One can define aCSP(|)-algebra Con on TCSP(|)( /0) by:

F ⊓ConG= F ⊓G

(
e

~a)Con(F1, . . . ,Fn) =

{

Fj ⊓ (Fj �
e

i 6= j aiFi) (if a = a j)e
i aiFi (if a 6= any ai)

The operator� is, of course, no longer available as a constructor. However, it can
alternatively be treated as a binary deconstructor. While its treatment as such is no
more successful than our treatment of parallel operators, it is also no less success-
ful. We define it simultaneously with(n+1)-ary functions�a1...an onTCSP(|)( /0), for
n≥ 0, where theai are all distinct. That we are defining infinitely many functions
simultaneously arises from dealing with the infinitely manydeterministic choice
operators (there would be be infinitely many even if we considered them as param-
eterised on thea’s). However, we anticipate that this will cause no real difficulty,
given that we have overcome the difficulty of dealing with binary deconstructors.

Here are the required definitions:

(F ⊓F ′)�G = (F �G)⊓ (F ′ �G)

(
m

i

aiFi)�G = (F1, . . . ,Fn)�a1...an G

(F1, . . . ,Fn)�a1...an (G⊓G′) = ((F1, . . . ,Fn)�a1...an G)⊓ ((F1, . . . ,Fn)�a1...an G′)

(F1, . . . ,Fn)�a1...an (
m

j

b jG j) = (a1 → F1)� (. . .((an → Fn)�
m

j

b jG j) . . . ) (8)

where, in the last equation, the notational convention(a1 → t1)�
en

i=2aiti is usedn
times. It is clear that� together with the functions

�a1...an :TCSP(|)( /0)n+1 → TCSP(|)( /0)
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defined by:
�a1...an(F1, . . . ,Fn,G) = (

m

i

aiFi)�G (9)

satisfy the equations, and, using the fact that all finitary refusal sets are definable by
normal forms, one sees that they are the unique such functions.

We can treat the CSP parallel operator|| in a similar vein following the pattern
given above for parallel merge operators in the case of synchronisation trees. We
define it simultaneously with(n+1)-ary functions||a1...an on TCSP(|)( /0), for n ≥ 0,
where theai are all distinct:

(F ⊓F ′) || G = (F || G)⊓ (F ′ || G)

(
m

i

aiFi) || G = (F1, . . . ,Fn) ||
a1...an G

(F1, . . . ,Fn) ||
a1...an (G⊓G′) = ((F1, . . . ,Fn) ||

a1...an G)⊓ ((F1, . . . ,Fn)�a1...an G′)

(F1, . . . ,Fn) ||
a1...an (

m

j

b jG j) =
m

ai=b j

ai(Fi || G j) (10)

Much as before,|| together with the functions||a1...an: TCSP(|)( /0)n+1 → TCSP(|)( /0)
defined by:

||a1...an (F1, . . . ,Fn,G) = (
m

i

aiFi) || G

are the unique functions satisfying the equations.
Finally we consider the CSP interleaving operator|||. We define this by following

an idea, exemplified in the ACP literature [BK85, BK86], of splitting an associative
operation into several parts. Here we split||| into aleft interleavingoperator|||l and
a right interleavingoperator|||r so that:

F ||| G= (F |||l G)� (F |||r G)

In ACP the parallel operator is split into three parts: a leftmerge, a right merge
(defined in terms of the left merge), and a communication merge; in a subtheory,
PA, there is no communication, and the parallel operator, now an interleaving one,
is split into left and right parts [BK86]. The idea of splitting an associative operation
into several operations can be found in a much wider context [EFG08] where the
split into two or three parts is axiomatised by the respective notions of dendriform
dialgebra and trialgebra.

Our left and right interleaving are defined by the following ‘binary deconstructor’
equations:
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(F ⊓F ′) |||l G = (F |||l G)⊓ (F ′ |||l G)

(

nm

i=1

aiFi) |||
l G =

m

i

ai((Fi |||
l G)� (Fi |||

r G))

G |||r (F ⊓F ′) = (G |||r F)⊓ (G |||r F ′)

G |||r (

nm

i=1

aiFi) =
m

i

ai((G |||l Fi)� (G |||r Fi)) (11)

As may be expected, these equations also have unique solutions, now given by:

F |||l G = {(ε,W) | (ε,W) ∈ F}∪{(w,W) | (u,W) ∈ F, (v,W) ∈ G, w∈ u|l v}
F |||r G = {(ε,W) | (ε,W) ∈ G}∪{(w,W) | (u,W) ∈ F, (v,W) ∈ G, w∈ u|r v}

whereu|l v is the set of interleavings ofu andv which begin with a letter ofu, and
u|r v is defined analogously. It is interesting to note that:

F |||l (G⊓G′) = (F |||l G)⊓ (F |||l G′)

and similarly for|||r .

6 Adding divergence

The treatment of CSP presented thus far dealt with finite divergence-free processes
only. There are several ways to extend the refusal sets modelof Section 3 to infinite
processes with divergence. The most well-known model is thefailures/divergences
model of [Hoa85], further elaborated in [Ros98]. A characteristic property of this
model is that divergence, i.e., an infinite sequence of internal actions, is modelled as
Chaos, a process that satisfies the equation:

Chaos�x = Chaos⊓x= Chaos (12)

So afterChaosno further process activity is discernible.
An alternative extension is thestable failuresmodel proposed in [BKO87], and

also elaborated in [Ros98]. This model equates processes that allow the sameob-
servations, where actions and deadlock are considered observable, butdivergence
does not give rise to any observations. A failure pair(w,W)—now allowingW to
be infinite—records an observation in whichw represents a sequence of actions be-
ing observed, andW represents the observation of deadlock under the assumption
that the environment in which the observed process is running allows only the (in-
ter)actions in the setW. Such an observation can be made if after engaging in the
sequence of visible actionsw, the observed process reaches a state in which no fur-
ther internal actions are possible, nor any actions from thesetW. Besides failure
pairs, also traces are observable, and thus the observable behaviour of a process is
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given by a pair(T,F) whereT is a set of traces andF is a set of failure pairs. Unlike
the modelR f of Section 3, the traces are not determined by the failure pairs. In fact,
in a process that can diverge in every state, the set of failure pairs is empty, yet the
set of traces conveys important information.

In the remainder of this paper we add a constantΩ to the signature of CSP that is
a zero for the semilattice generated by⊓. This will greatly facilitate the forthcoming
development. Intuitively, one may think ofΩ as divergence in the stable failures
model.

W.r.t. the equational theory CSP(�) of Section 3 we thus add the constantΩ and
the single axiom:

x⊓Ω = x (13)

thereby obtaining the theory CSP(�,Ω). We note two useful derived equations:

x⊓ (Ω �y) = x⊓ (x�y)

(Ω �x)⊓ (Ω �y) = (Ω �x)� (Ω �y) (14)

Semantically, aprocessis now given by a pair(T,F), whereT is a set of traces
andF is a set of failure pairs that satisfy the following conditions:

1. ε ∈ T
2. wa∈ T ⇒ w∈ T
3. (w,W) ∈ F ⇒ w∈ T
4. (w,W) ∈ F ∧V ⊆W ⇒ (w,V) ∈ F
5. (w,W) ∈ F ∧∀a∈V.wa /∈ T ⇒ (w,W∪V) ∈ F (whereV ⊆ A)

The two components of such a pairP are denotedTP andFP, respectively, and for
w∈ TP we define futP(w) := {a∈ A | wa∈ TP}. We can define the CSP operators
on processes by setting

P opQ= (P opT Q,P opR Q)

where opT is given by:

StopT = {ε}
a→T P = {ε}∪{aw | w∈ TP}
P⊓T Q = TP∪TQ

P�T Q = TP∪TQ

fT (P) = { f (w) | w∈ TP}
P\T a = {w\a | w∈ TP}
P ||T Q = {w | w∈ TP, w∈ TQ}
P |||T Q = {w | u∈ TP, v∈ TQ, w∈ u|v}

and opR is given as opRf
was in Section 3, but without the restriction to finite sets

W in definingStopR . For the new processΩ we set

ΩT = {ε} and ΩR = /0
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This also makes the collection of processes into a CSP(�,Ω)-algebra,F .
A processP is calledfinitary if TP is finite. The finitary processes evidently form

a subalgebra ofF ; we call itFf .

Lemma 6.1.Let P be a finitary process. Then, for every w∈ TP there is an n≥ 0
and V1, . . . ,Vn ⊆ futF(w) such that(w,W)∈ FP iff W∩Vi = /0 for some i∈ {1, . . . ,n}.

Proof. Closure conditions 4 and 5 above imply that(w,W) ∈ FP if, and only if,
(w,W∩ futP(w)) ∈ FP. Thus we only need to be concerned about pairs(w,W) with
W ⊆ futP(w). Now, as futP(w) is finite, for any relevant(w,W) ∈ F , of which there
are finitely many, we can takeV to be futP(w)\W, and we obtain finitely many such
sets. ⊓⊔

Note that it may happen thatn= 0, in contrast with the case of Lemma 3.1.

Lemma 6.2.All finitary processes are definable by closedCSP(�,Ω) terms.

Proof. Let P be a finitary process. We proceed by induction on the length ofthe
longest trace inTP. By the previous lemma there are setsV1, . . . ,Vn, for somen≥ 0,
such that(ε,W) ∈ F iff W∩Vi = /0 for somei ∈ {1, . . . ,n}. DefineTa andFa, for
a∈ TP, by:

Ta = {w | aw∈ TP} Fa = {(w,W) | (aw,W) ∈ FP}

Then it is not hard to see that eachPa := (Ta,Fa) is a finitary process, and that

P=





l

i

m

a∈Vi

a→ Pa



 ⊓



Ω �
m

a∈TP

a→ Pa





As the longest trace inTa is strictly shorter than the longest one inTP, the proof
concludes, employing the induction hypothesis.⊓⊔

Proposition 6.3.CSP(�,Ω) is ground equationally complete with respect to both
F andFf .

Proof. This time we recursively define a normal form as a CSP(�,Ω)-term of the
form l

L∈L

m

a∈L

a→ ta or Ω �
m

a∈K

a→ ta

whereL is a finite non-empty saturated collection of finite sets of actions,K is a
finite set of actions, and each termta is in normal form. Every term is provably equal
in CSP(�,Ω) to a term in normal form; the proof proceeds as for Proposition 3.3,
but now also using the derived equations (14). Next, by Lemma7.2 below, if two
normal forms have the same denotation inF then they are identical. So the result
follows for F , and then forFf too, as all closed terms denote finitary processes.
⊓⊔
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Theorem 6.4.The algebraFf of finitary processes is the initialCSP(�,Ω) alge-
bra.

Proof. Let the initial such algebra be I. There is a unique homomorphismh:I →Ff .
By Lemma 6.2,h is a surjection. By the previous proposition,Ff is complete for
equations between closed terms, and soh is an injection. Henceh is an isomorphism,
completing the proof. ⊓⊔

As in Section 5, in order to deal with deconstructors, particularly hiding, we re-
place external choice by deterministic external choice. The availability ofΩ permits
useful additional such operators. The equational theory CSP(|,Ω) has as signature
the binary operation symbol⊓, and for any deterministic action sequence~a, the
n-ary operation symbols

e
~a (as in Section 5), as well as the newn-ary operation

symbols
eΩ

~a , for n≥ 0, which denote a deterministic external choice withΩ as one
of the summands. We adopt conventions for

eΩ
~a analogous to those previously in-

troduced for
e

~a(t1, . . . , tn). We write
eΩ

~a (t1, . . . , tn) asΩ �
en

i=1aiti . We also write
Ω � (c1 → t1)�

en
j=2c j t j for Ω �

en
j=1c j t j , so that thec j ( j = 1,n) must all be

distinct.
The first three groups of axioms of CSP(|,Ω) are:

• ⊓,Ω is a semilattice with a zero—hereΩ is the 0-ary case of
eΩ

~a ,
• both deterministic external choice operators

e
~a and

eΩ
~a are commutative, as

explained in Section 5, and
• both deterministic external choice operators distribute over internal choice, as

explained in Section 5,

Given commutativity, we are, as before, justified in writingdeterministic exter-
nal choices

e
a∈I ata or Ω �

e
a∈I ata, over finite, possibly empty, sets of actionsI ,

assuming some standard ordering of pairs(a, ta) without repetitions. Next, using the
analogous convention to (6) we can then also understandΩ �

en
j=1c j t j , and so also

Ω � (c1 → t1)�
en

j=2c j t j , even when thec j are not all distinct. With these conven-
tions established, we can now state the final group of axioms.These are all variants
of Axiom (7) of Section 5, allowing each of the two deterministic external choices
to have anΩ -summand:

(

Ω �
m

i

aixi

)

⊓



Ω � (b1 → y1)�
nm

j=2

b jy j



 ⊑ Ω � (b1 → y1)�
m

i

aixi

(

Ω �
m

i

aixi

)

⊓



(b1 → y1)�
nm

j=2

b jy j



 ⊑ Ω � (b1 → y1)�
m

i

aixi

(

m

i

aixi

)

⊓



Ω � (b1 → y1)�
nm

j=2

b jy j



 ⊑ (b1 → y1)�
m

i

aixi
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(

m

i

aixi

)

⊓



(b1 → y1)�
nm

j=2

b jy j



 ⊑ (b1 → y1)�
m

i

aixi (15)

As in the case of Axiom (7), restricting any of these choices to be deterministic
results in an axiom of equivalent power. We note two useful derived equations:

m

i

aixi ⊓ (Ω �
m

j

b jy j) =
m

i

aixi ⊓ (
m

i

aixi �
m

j

b jy j)

(Ω �
m

i

aixi)⊓ (Ω �
m

j

b jy j) = (Ω �
m

i

aixi)�
m

j

b jy j (16)

where two further notational conventions are employed:(
em

i=1aiti)� (
en

j=1b j t ′j)

stands for
em+n

k=1 ckt ′′k whereck = ak andt ′′k = tk, for k = 1,m, andck = bk−m, and
t ′′k = t ′k−m, for k= m+1,m+n; and(Ω �

em
i=1aiti)� (

en
j=1b j t ′j) is understood anal-

ogously. In fact, the first three axioms of (15) are also derivable from (16), in the
presence of the other axioms, and thus may be replaced by (16).

The collection of processes is turned into a CSP(|,Ω)-algebraFd as before, writ-
ing:

P opFd
Q= (P opTd

Q,P opRd
Q)

and defining opTd
and opRd

in the evident way:

P⊓Td Q = TP∪TQ

(
e

~a)Td(P1, . . . ,Pn) = {ε}∪{aiw | w∈ TPi}

(
eΩ

~a )Td(P1, . . . ,Pn) = {ε}∪{aiw | w∈ TPi}

(
eΩ

~a )Rd(P1, . . . ,Pn) = {(aiw,W) | (w,W) ∈ FPi}

with ⊓Rd and(
e

~a)Rd given just as in Section 5. Exactly as in Section 5, but now
using the derived equations (16), we obtain:

Theorem 6.5.The algebraFd is complete for equations between closedCSP(|,Ω)
terms.

Theorem 6.6.The finitary subalgebraFdf of Fd is the initialCSP(|,Ω) algebra.

Turning to the deconstructors, relabelling and concealment can again be treated
homomorphically. For relabelling byf one simply adds the equation:

hRl(Ω �
m

i

aiFi) = Ω �
m

i

f (ai)hRl(Fi)

to the treatment in Section 5, and checks that the implied algebra satisfies the
equations. Pleasingly, the treatment of concealment can besimplified in such a
way that the deconstructor� is no longer needed. For everya ∈ A one defines
ha :TCSP(|,Ω)( /0)→ TCSP(|,Ω)( /0) homomorphically by:
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ha(P⊓Q) = ha(P)⊓ha(Q)

ha

(

nm

i=1

aiPi

)

=

{

ha(Pj)⊓ (Ω �
e

i 6= j aiha(Pi)) (if a= a j , where1≤ j ≤ n)en
i=1aiha(Pi) (if a 6= anyai)

ha

(

Ω �
nm

i=1

aiPi

)

=

{

ha(Pj)⊓ (Ω �
e

i 6= j aiha(Pi)) (if a= a j , where1≤ j ≤ n)
Ω �

en
i=1aiha(Pi) (if a 6= anyai)

Note the use of the new form of deterministic choice here. Onehas again to verify
that the implicit algebra obeys satisfies the required equations. The treatment of the
binary deconstructors�, || and ||| is also a trivial adaptation of the treatment in
Section 5. For� one adds a further auxiliary operator�Ω ,a1...an and the equations:

(Ω �
m

i

aiPi)�Q = (P1, . . . ,Pn)�Ω ,a1...an Q

(P1, . . . ,Pn)�Ω ,a1...an (Q⊓Q′) = ((P1, . . . ,Pn)�Ω ,a1...an Q)⊓
((P1, . . . ,Pn)�Ω ,a1...an Q′)

(P1, . . . ,Pn)�Ω ,a1...an (
m

j

b jQ j) = (Ω �
m

i

aiPi)�
m

j

b jQ j

(P1, . . . ,Pn)�Ω ,a1...an (Ω �
m

j

b jQ j) = (Ω �
m

i

aiPi)�
m

j

b jQ j

(P1, . . . ,Pn)�a1...an (Ω �
m

j

b jQ j) = (Ω �
m

i

aiPi)�
m

j

b jQ j

For || one adds the auxiliary operator||Ω ,a1...an and the equations:

(Ω �
m

i

aiPi) || Q = (P1, . . . ,Pn) ||
Ω ,a1...an Q

(P1, . . . ,Pn) ||
Ω ,a1...an (Q⊓Q′) = ((P1, . . . ,Pn) ||

Ω ,a1...an Q)⊓
((P1, . . . ,Pn)�Ω ,a1...an Q′)

(P1, . . . ,Pn) ||
Ω ,a1...an (

m

j

b jQ j) = Ω �
m

ai=b j

ai(Pi || Q j)

(P1, . . . ,Pn) ||
Ω ,a1...an (Ω �

m

j

b jQ j) = Ω �
m

ai=b j

ai(Pi || Q j)

(P1, . . . ,Pn) ||
a1...an (Ω �

m

j

b jQ j) = Ω �
m

ai=b j

ai(Pi || Q j)

Finally, for ||| one simply adds extra equations:
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(Ω �
nm

i=1

aiPi) |||
l Q = Ω �

m

i

ai((Pi |||
l Q)� (Pi |||

r Q))

Q |||r (Ω �
nm

i=1

aiPi) = Ω �
m

i

ai((Q |||l Pi)� (Q |||r Pi))

7 Combining CSP and functional programming

To combine CSP with functional programming, specifically the computationalλ -
calculus, we use the monadTCSP(|,Ω) for the denotational semantics. As remarked
above, CSP processes then become terms of typeempty . However, as the construc-
tors are polymorphic, it is natural to go further and look forpolymorphic versions
of the deconstructors. We therefore add polymorphic constructs toλc as follows:

Constructors

M :σ N :σ
M⊓N :σ

M :σ
a→ M :σ

Ω :σ

Unary Deconstructors

M :σ
f (M) :σ

M :σ
M\a:σ

for any relabelling functionf , and anya∈ A. (One should really restrict the allow-
able relabelling functions in order to keep the syntax finitary.)

Binary Deconstructors

M :σ N :σ
M �N :σ

M :σ N :τ
M || N :σ × τ

M :σ N :τ
M ||| N :σ × τ

The idea of the two parallel constructs is to evaluate the twoterms in parallel and
then return the pair of the two values produced. We did not include syntax for the
two deterministic choice constructors as they are definablefrom a→− andΩ with
the aid of the� deconstructor.

For the denotational semantics, the semantics of types is given as usual using
the monadTCSP(|,Ω), which we know exists by the general considerations of Sec-
tion 2. These general considerations also yield a semanticsfor the constructors. For
example, for every setX we have the map:

⊓X :TCSP(|,Ω)(X)2 → TCSP(|,Ω)(X)

which we can use forX = [[σ ]] to interpret termsM⊓N :σ .
The homomorphic point of view also leads to an interpretation of the unary de-

constructors, but using free algebras rather than just the initial one. For example, for
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relabelling byf we need a function:

hRl :TCSP(|,Ω)(X)→ TCSP(|,Ω)(X)

We obtain this as the unique homomorphism extending the unitηX:X→TCSP(|,Ω)(X),

equippingTCSP(|,Ω)(X) with the algebra structureA = (TCSP(|,Ω)(X),⊓A ,
e

A ,
eΩ

A )
where

x⊓A y= x⊓X y

for x,y∈ TCSP(|,Ω)(X),

(
e

~a)A (x1, . . . ,xn) = (
e

f (~a))X(x1, . . . ,xn)

and

(
eΩ

~a )A (x1, . . . ,xn) = (
eΩ

f (~a))X(x1, . . . ,xn)

Concealment−\a can be treated analogously, but now following the treatment
in the case ofFdf , and definingA by:

x⊓A y= x⊓X y

for x,y∈ TCSP(|,Ω)(X),

(
e

~a)A (x1, . . . ,xn) =

{

x j ⊓ (Ω �
e

i 6= j aixi) (if a= a j , where1≤ j ≤ n)en
i=1aixi (if a 6= anyai)

and

(
eΩ

~a )A (x1, . . . ,xn) =

{

x j ⊓ (Ω �
e

i 6= j aixi) (if a= a j , where1≤ j ≤ n)
Ω �

en
i=1aixi (if a 6= anyai)

We here again make use of the deterministic choice operator made available by the
presence ofΩ .

However, we cannot, of course, carry this on to binary deconstructors as we have
no general algebraic treatment of them. We proceed instead by giving a concrete
definition of them (and the other constructors and deconstructors). That is, we give
an explicit description of the free CSP(|,Ω)-algebra on a setX and define our oper-
ators in terms of that representation.

An X-trace is a pair(w,x), wherew ∈ A∗ andx ∈ X; it is generally more sug-
gestive to write(w,x) aswx. For any relabelling functionf , we setf (wx) = f (w)x,
and, for anya∈ A, we setwx\a= (w\a)x. An X-processis a pair(T,F) with T a
set of traces as well asX-traces, andF a set of failure pairs, satisfying the same five
conditions as in Section 6, together with:

2′ wx∈ T ⇒ w∈ T (for x∈ X)

The CSP operators are defined onX-processes exactly as before, except that the
two parallel operators now have more general types:

||X,Y, |||X,Y:TCSP(|,Ω)(X)×TCSP(|,Ω)(Y)→ TCSP(|,Ω)(X×Y)
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We take futP(w) := {a∈ A | wa∈ TP}, as before.

ΩT (X) = {ε}
ΩR(X) = /0
StopT (X) = {ε}
StopR(X) = {(ε,W) |W ⊆ A}
a→T (X) P = {ε}∪{aw | w∈ TP}
a→R(X) P = {(ε,W) | a /∈W}∪{(aw,W) | (w,W) ∈ FP}
P⊓T (X) Q = TP∪TQ

P⊓R(X) Q = FP∪FQ

P�T (X) Q = TP∪TQ

P�R(X) Q = {(ε,W) | (ε,W) ∈ FP∩FQ}∪{(w,W) | w 6= ε, (w,W) ∈ FP∪FQ}
fT (X)(P) = { f (w) | w∈ TP}

fR(X)(P) = {( f (w),W) | (w, f−1(W)∩ futP(w)) ∈ FP}
P\T (X)a = {w\a | w∈ TP}
P\R(X)a = {(w\a,W) | (w,W∪{a}) ∈ FP}
P ||T (X,Y) Q = {w | w∈ TP∩TQ∩A∗}∪{w(x,y) | wx∈TP, wy∈TQ}
P ||R(X,Y) Q = {(w,W∪V) | (w,W) ∈ FP, (w,V) ∈ FQ}
P |||T (X,Y) Q = {w | u∈ TP∩A∗, v∈TQ∩A∗, w∈u|v}∪

{w(x,y) | ux∈ TP, vy∈TQ, w∈u|v}
P |||R(X,Y) Q = {(w,W) | (u,W)∈FP, (v,W)∈FQ, w∈u|v}

Here, much as before, we writePopF (X) Q=(PopT (X) Q,PopR(X) Q)when defin-
ing the CSP operators onX-processes. TheX-processes also form the carrier of a
CSP(|,Ω)-algebraFd(X), with the operators defined as follows:

P⊓Td(X) Q = TP∪TQ

P⊓Rd(X) Q = FP∪FQ

(
eΩ

~a )Td(X)(P1, . . . ,Pn) = {ε}∪{aiw | w∈ TPi}

(
eΩ

~a )Rd(X)(P1, . . . ,Pn) = {(aiw,W) | (w,W) ∈ FPi}
(
e

~a)Td(X)(P1, . . . ,Pn) = {ε}∪{aiw | w∈ TPi}
(
e

~a)Rd(X)(P1, . . . ,Pn) = {(ε,W) |W∩{a1, . . . ,an}= /0}∪
{(aiw,W) | (w,W) ∈ FPi}

The finitaryX-processes are those with a finite set of traces andX-traces; they form
the carrier of a CSP(|,Ω)-algebraFdf(X).

We now show thatFdf(X) is the free CSP(|,Ω)-algebra overX. As is well
known, the free algebra of a theory Th over a setX is the same as the initial al-
gebra of the theory Th+ obtained by extending Th with constantsx for eachx∈ X
but without changing the axioms. The unit mapη :X → TTh(X) sendsx∈ X to the
denotation ofx in the initial algebra. We therefore show thatFdf(X), extended to a
CSP(|,Ω)+-algebra by taking

[[x]] = ({x}, /0) (for x∈ X)
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is the initial CSP(|,Ω)+-algebra. We begin by looking at definability.

Lemma 7.1.The finitary X-processes are those definable by closedCSP(|,Ω)+

terms.

Proof. The proof goes just as the one for Lemma 6.2, using that Lemma 6.1 applies
just as well to finitaryX-processes, but this time we have

P=
l

i

m

a∈Vi

a→ Pa ⊓



Ω �
m

a∈TP

a→ Pa



 ⊓
l

x∈TP

x ⊓⊔

Next, we say that a closed CSP(|,Ω)+-termt is in normal formif it is has one of
the following two forms:

l

L∈L

m

a∈L

ata⊓
l

x∈J

x or

(

Ω �
m

a∈K

ata

)

⊓
l

x∈J

x

where, as appropriate,L is a finite non-empty saturated collection of finite sets of
actions,J ⊆fin X, K ⊆fin A, and each termta is in normal form.

Lemma 7.2.Two normal forms are identical if they have the same denotation in
Fdf(X).

Proof. Consider two normal forms with the same denotation inFdf(X), say(T,F).
As (ε, /0) ∈ F iff F is the denotation of a normal form of the first form (rather than
the second), both normal forms must be of the same form. Thus,there are two cases
to consider, the first of which concerns two forms:

l

L∈L

m

a∈L

ata⊓
l

x∈J

x
l

L′∈L ′

m

a′∈L′

a′t ′a′ ⊓
l

x∈J′

x

We argue by induction on the sum of the sizes of the two normal forms. We evidently
have thatJ = J′. Next, if a∈

⋃

L thena∈ T and soa∈
⋃

L ′; we therefore have
that

⋃

L ⊆
⋃

L ′. Now, if L ∈ L then (ε,(
⋃

L ′)\L) ∈ F ; so for someL′ ∈ L

we haveL′ ∩ ((
⋃

L ′)\L) = /0, and soL′ ⊆ L. As L ′ is saturated, it follows by the
previous remark thatL ∈ L ′. So we have the inclusionL ⊆ L ′ and then, arguing
symmetrically, equality.

Finally, the denotations ofta andt ′a, for a∈
⋃

L =
⋃

L ′ are the same, as they
are determined byT andF , being{w | aw∈ T} and{(w,W) | (aw,W) ∈ F}, and
the argument concludes, using the inductive hypothesis.

The other case concerns normal forms:
(

Ω �
m

a∈K

ata

)

⊓
l

x∈J

x

(

Ω �
m

a′∈K′

a′t ′a

)

⊓
l

x∈J′

x

Much as before we findJ = J′, K = K′, andta = ta for a∈ K. ⊓⊔
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Lemma 7.3.CSP(|,Ω)+ is ground complete with respect toFdf(X).

Proof. As before, a straightforward induction shows that every term has a normal
form, and then completeness follows by Lemma 7.2.⊓⊔

Theorem 7.4.The algebraFdf(X) is the freeCSP(|,Ω)-algebra over X.

Proof. It follows from Lemmas 7.1 and 7.3 thatFdf(X)+ is the initial CSP(|,Ω)+-
algebra. ⊓⊔

As with any finitary equational theory, CSP(|,Ω) is equationally complete with
respect toFdf(X) whenX is infinite. It is not difficult to go a little further and show
that this also holds whenX is only required to be non-empty, and, even, ifA is
infinite, when it is empty.

Now that we have an explicit representation of the free CSP(|,Ω)-monad in terms
of X-processes, we indicate how to use it to give the semantics ofthe computational
λ -calculus. First we need the structure of the monad. As we know from the above,
the unitηX : X → TCSP(|,Ω)(X) is the mapx 7→ ({x}, /0). Next, we need the homo-
morphic extensiong† : Fdf(X) → Fdf(Y) of a given mapg:X → Fdf(Y), i.e., the
unique such homomorphism making the following diagram commute:

X

TCSP(|,Ω)(X)

ηX

❄ g†
✲ TCSP(|,Ω)(Y)

g

✲

This is given by:

(g†(P))T = {v | v∈ TP∩A∗}∪{vw | vx∈ TP, w∈ g(x)T }

(g†(P))R = {(v,V) ∈ FP}∪{(vw,W) | vx∈ TP, (w,W) ∈ g(x)R}

As regards the constructors and deconstructors, we have already given explicit
representations of them as functions over (finitary)X-processes. We have also al-
ready given homomorphic treatments of the unary deconstructors. We finally give
treatments of the binary deconstructors as unique solutions to equations, along sim-
ilar lines to their treatment in the case ofFdf . Observe that:

(
e

~a)X(P1, . . . ,Pn) = a1P1 �X a2P2 �X . . .�X anPn

(
eΩ

~a )X(P1, . . . ,Pn) = Ω �X a1P1 �X a2P2 �X . . .�X anPn

Using this, one finds that�X, �Ω ,a1...an
X and�a1...an

X , the latter defined as in equa-
tion (9), are the unique functions which satisfy the evidentanalogues of equa-
tions (8) together with, making another use of the form of external choice made
available byΩ :

η(x)�P= η(x)⊓X (Ω �P)

and
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(P1, . . . ,Pn)�a1...an η(x) = (
eΩ

~a )X(P1, . . . ,Pn)⊓X η(x)
(P1, . . . ,Pn)�Ω ,a1...an η(x) = (

eΩ
~a )X(P1, . . . ,Pn)⊓X η(x)

As regards concurrency, we define

||X,Y:TCSP(|,Ω)(X)×TCSP(|,Ω)(Y)→ TCSP(|,Ω)(X×Y)

together with functions

||a1...an
X,Y :TCSP(|,Ω)(X)n×TCSP(|,Ω)(Y)→ TCSP(|,Ω)(X×Y)

||Ω ,a1...an
X,Y :TCSP(|,Ω)(X)n×TCSP(|,Ω)(Y)→ TCSP(|,Ω)(X×Y)

||xX,Y:TCSP(|,Ω)(Y)→ TCSP(|,Ω)(X×Y)

where theai ∈ A are all different, andx ∈ X, by the analogues of equations (10)
above, together with:

η(x) || Q = ||x (Q)

||x (P⊓Q) = ||x (P)⊓ ||x (Q)
||x (

en
i=1aiPi) = Ω

||x (Ω �
en

i=1aiPi) = Ω
||x (η(y)) = η((x,y))

(P1, . . . ,Pn) ||
a1...an η(x) = Ω

(P1, . . . ,Pn) ||
Ω ,a1...an η(x) = Ω

Much as before, the equations have a unique solution, with the || component being
||X,Y.

As regards interleaving, we define

|||lX,Y, |||
r
X,Y:TCSP(|,Ω)(X)×TCSP(|,Ω)(Y)→ TCSP(|,Ω)(X×Y)

by:

P |||l
Tdf (X,Y) Q = {ε}∪{w | u∈ TP∩A∗, v∈TQ∩A∗, w∈u|l v}∪

{w(x,y) | ux∈ TP, vy∈TQ, w∈u |l v∨ (u= v= w= ε)}

P |||l
Rdf (X,Y) Q = {(ε,W) | (ε,W) ∈ FP}∪

{(w,W) | (u,W) ∈ FP, (v,W) ∈ FQ, w∈ u |l v}

P |||rX,Y Q = Q |||lY,X P

One has that:
P |||X,Y Q= P |||lX,Y Q � P |||rX,Y Q
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and that|||lX,Y, |||
r
X,Y are components of the unique solutions to the analogues of

equations (11) above, together with:

η(x) |||l Q = |||l ,x (Q)

|||l ,x (P⊓Q) = |||l ,x (P)⊓ |||l ,x (Q)
|||l ,x (

en
i=1aiPi) = Ω

|||l ,x (Ω �
en

i=1aiPi) = Ω
|||l ,x (η(y)) = η(x,y)

and corresponding equations for|||r and|||r,y.
It would be interesting to check more completely which of theusual laws, as

found in, e.g., [BHR84, Hoa85, DeN85], the CSP operators at the level of free
CSP(|,Ω)-algebras obey. Note that some adjustments need to be made due to vary-
ing types. For example,|| is commutative, which here means that the following
equation holds:

TCSP(|,Ω)(γX,Y)(P ||X,Y Q) = Q ||Y,X P

whereγ :X×Y →Y×X is the commutativity map(x,y) 7→ (y,x).

7.1 Termination

As remarked in the introduction, termination and sequencing are available in a stan-
dard way for terms of typeunit . Syntactically, we regardskip as an abbreviation
for ∗ andM;N as one for(λx :unit .N)(M) wherex does not occur free inN; se-
mantically, we have a corresponding element of, and binary operator over, the free
CSP(|,Ω)-algebra on the one-point set.

Let us use these ideas to treat CSP extended with terminationand sequencing.
We work with the finitary{X}-processes representation ofTCSP(|,Ω)({X}). Then,
following the above prescription, termination and sequencing are given by:

SKIP = {X} P;Q= (x∈ {X} 7→ Q)†(P)

For general reasons, termination and sequencing, so-defined, form a monoid and
sequencing commutes with all constructors in its first argument. For example we
have that:

nm

i=1

ai(Pi ;Q) = (
nm

i=1

aiPi);Q

Composition further commutes with⊓ in its second argument.
The deconstructors are defined as above except that in the case of the concur-

rency operators one has to adjust||{X},{X} and|||{X},{X} so that they remain within
the world of the{X}-processes; this can be done by postcomposing them with the
evident bijection between{X}× {X}-processes and{X}-processes, and all this
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restricts to the finitary processes. Alternatively one can directly consider these ad-
justed operators as deconstructors over the (finitary){X}-processes.

The {X}-processes are essentially the elements of the stable failures model
of [Ros98]. More precisely, one can define a bijection from Roscoe’s model to our
{X}-processes by settingθ (T,F) = (T,F ′) where

F ′ = {(w,W) ∈ A∗×P(A) | (w,W∪{X}) ∈ F}

The inverse ofθ sendsF ′ to the set:

{(w,W),(w,W∪{X}) | (w,W) ∈ F ′}∪

{(w,W) | wX ∈ T ∧W ⊆ A}∪{(wX,W) | wX ∈ T ∧W ∈ A∪{X}}

and is a homomorphism between all our operators, whether constructors, decon-
structors, termination, or sequencing (suitably defined),and the corresponding ones
defined for Roscoe’s model.

8 Discussion

We have shown the possibility of a principled combination ofCSP and functional
programming from the viewpoint of the algebraic theory of effects. The main miss-
ing ingredient is an algebraic treatment of binary deconstructors, although we were
able to partially circumvent that by giving explicit definitions of them. Also missing
are a logic for proving properties of these deconstructors,an operational semantics,
and a treatment that includes recursion.

As regards a logic, it may prove possible to adapt the logicalideas of [PPr08,
PPr09] to handle binary deconstructors; the main proof principle would then be that
of computation induction, that if a proposition holds for all ‘values’ (i.e., elements
of a given setX) and if it holds for the applications of each constructor to any given
‘computations’ (i.e., elements ofT(X)) for which it is assumed to hold, then it holds
for all computations. We do not anticipate any difficulty in giving an operational
semantics for the above combination of the computationalλ -calculus and CSP and
proving an adequacy theorem.

To treat recursion algebraically, one passes from equational theories to inequa-
tional theories Th (inequations have the formt ≤ u, for termst, u in a given signature
Σ ); inequational theories can include equations, regardingan equation as two evi-
dent inequations. There is a natural inequational logic fordeducing consequences
of the axioms: one simply drops symmetry from the logic for equations [Blo76].
ThenΣ -algebras and Th-algebras are taken in the category ofω-cpos and continu-
ous functions, a free algebra monad always exists, just as inthe case of sets, and the
logic is complete for the class of such algebras. One includes a divergence constant
Ω in the signature and the axiom

Ω ≤ x
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so that Th-algebras always have a least element. Recursive definitions are then mod-
elled by least fixed-points in the usual way. See [HPP06, Plo06] for some further
explanations.

The three classical powerdomains: convex (aka Plotkin), lower (aka Hoare) and
upper (aka Smyth) provide a useful illustration of these ideas [GHK03, HPP06].
One takes as signature a binary operation symbol⊓, to retain notational consistency
with the present paper (a more neutral symbol, such as∪, is normally used instead),
and the constantΩ ; one takes the theory to be that⊓ is a semilattice (meaning, as
before, that associativity, commutativity and idempotence hold) and that, as given
above,Ω is the least element with respect to the ordering≤. This gives an algebraic
account of the convex powerdomain.

If one adds thatΩ is the zero of the semilattice (which is equivalent, in the present
context, to the inequationx ≤ x⊓ y) one obtains instead an algebraic account of
the lower powerdomain. One then further has the notationally counterintuitive facts
that x ≤ y is equivalent toy ⊑ x, with ⊑ defined as in Section 3, and thatx⊓ y is
the supremum ofx andy with respect to≤; in models,≤ typically corresponds to
subset. It would be more natural in this case to use the dual order to⊑ and to write⊔
instead of⊓, when we would be dealing with a join-semilattice with a least element
whose order coincides with≤.

If one adds instead thatx⊓y≤ x, one obtains an algebraic account of the upper
powerdomain. One now has thatx≤ y is equivalent in this context tox⊑ y, thatx⊓y
is the greatest lower bound ofx andy, and thatx⊓Ω = Ω (but this latter fact is not
equivalent in inequational logic tox⊓y≤ x); in models,≤ typically corresponds to
superset. The notations⊓ and⊑ are therefore more intuitive in the upper case, and
there one has a meet-semilattice with a least element whose order coincides with≤.

It will be clear from these considerations that the stable failures model fits into
the pattern of the lower powerdomain and that the failures/divergences model fits
into the pattern of the upper powerdomain. In the case of the stable failures model
it is natural, in the light of the above considerations, to take Th to be CSP(|,Ω)
together with the axiomΩ ≤ x. TheX-processes with countably many traces pre-
sumably form the free algebra overX, considered as a discreteω-cpo; one should
also characterise more general cases than discreteω-cpos.

One should also investigate whether a fragment of the failures/divergences model
forms the initial model of an appropriate theory, and look atthe free models of
such a theory. The theory might well be found by analogy with our work on the
stable failures model, substituting (12) for (13) and, perhaps, using the mixed-choice
constructor, defined below, to overcome any difficulties with the deconstructors. One
would expect the initial model to contain only finitely-generable processes, meaning
those which, at any trace, either branch finitely or diverge (and see the discussion
in [Ros98]).

Our initial division of our selection of CSP operators into constructors and de-
constructors was natural, although it turned out that a somewhat different division,
with ‘restricted’ constructors, resulted in what seemed tobe a better analysis (we
were not able to rule out the possibility that there are alternative, indirect, defini-
tions of the deconstructors with the original choice of constructors). One of these
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restricted constructors was a deterministic choice operator making use of the di-
vergence constantΩ . There should surely, however, also be a development without
divergence that allows the interpretation of the combination of CSP and functional
programming.

We were, however, not able to do this using CSP(|): the free algebra does not
seem to support a suitable definition of concealment, whether defined directly or
via a homomorphism. For example a straightforward extension of the homomorphic
treatment of concealment in the case of the initial algebra (cf. Section 5) would give

(a.x�b.Stop)\a= x⊓ (x�b.Stop)

However, our approach requires the right-hand side to be equivalent to a term built
from constructors only, but no natural candidates came forward—all choices that
came to mind lead to unwanted identifications.

We conjecture that, taking instead, as constructor, amixed-choiceoperator of the
form: m

i

αi .xi

where eachαi is either an action orτ, would lead to a satisfactory theory. This new
operator is given by the equation:

m

i

αi .xi =
l

αi=τ
xi ⊓





m

αi=τ
xi �

m

αi 6=τ

αi .xi





and there is a homomorphic relationship with concealment:

(
m

i

αi .xi)\a=
m

i

(αi\a).(xi\a)

(with the evident understanding ofαi\a). Note that in the stable failures model we
have the equation:

m

i

αi .xi =
l

αi=τ
xi ⊓



Ω �
m

αi 6=τ

αi .xi





which is presumably why the deterministic choice operator available in the presence
of Ω played so central a rôle there.

In a different direction, one might also ask if there is some problem if we alterna-
tively take an extended set of operators as constructors. For example, why not add
relabelling with its equations to the axioms? As the axioms inductively determine
relabelling on the finitary refusal sets model, that would still be the initial algebra,
and the same holds if we add any of the other operators we have taken as decon-
structors.
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However, theX-refusal sets would not longer be the free algebra, as there would
be extra elements, such asf (x) for x ∈ X, where f is a relabelling function. We
would also get some undesired equations holding between terms of the computa-
tional λ -calculus. For anyn-ary constructor op and evaluation contextE[−], one
has in the monadic semantics:

E[op(M1, . . . ,Mn)] = op(E[M1], . . . ,E[Mn])

So one would haveE[ f (M)] = f (E[M]) if one took relabelling as a constructor,
and, as another example, one would haveE[M || N] = E[M] || E[N] if one took the
concurrency operator as a constructor.

It will be clear to the reader that, in principle, one can investigate other process
calculi and their combination with functional programmingin a similar way. For ex-
ample for Milner’s CCS [Mil80] one could take action prefix (with names, conames
andτ) together withNIL and the sum operator as constructors, and as axioms that
we have a semilattice with a zero, for strong bisimulation, together with the usual
τ-laws, if we additionally wish to consider weak bisimulation. The deconstructors
would be renaming, hiding, and parallel, and all should havesuitable polymorphic
versions in the functional programming context. Other process calculi such as the
π-calculus [SW03, Sta08], or even the stochasticπ-calculus [Pri95, KS08], might
be dealt with similarly. In much the same way, one could combine parallelism with
a global store with functional programming, following the algebraic account of the
resumptions monad [HPP06, AP09] where the constructors arethe two standard
ones for global store [PP02], a nondeterministic choice operation, and a unary ‘sus-
pension’ operation.

A well-known feature of the monadic approach [HPP06] is thatit is often pos-
sible to combine different effects in a modular way. For example, the global side-
effects monad is(S×−)SwhereSis a suitable set of states. A common combination
of it with another monadT is the monadT(S×−)S. So, takingT = TCSP(|), for ex-
ample, we get a combination of CSP with global side-effects.

As another example, given a monoidM, one has theM-action monadM ×−
which supports a unaryM-action effect constructorm.−, parameterised by elements
m of the monoid. One might use this monad to model the passage oftime, taking
M to be, for example, the monoid of the natural numbers IN underaddition. A suit-
able combination of this monad with ones for CSP may yield helpful analyses of
timed CSP [RR99, OS06], withWait n;− given by the IN-action effect constructor.
We therefore have a very rich space of possible combinationsof process calculi,
functional programming and other effects, and we hope that some of these prove
useful.

Finally, we note that there is no general account of how the equations used in
the algebraic theory of effects arise. In such cases as global state, nondetermin-
ism or probability, there are natural axioms and monads already available, and it is
encouraging that the two are equivalent [PP02, HPP06]. One could investigate us-
ing operational methods and behavioural equivalences to determine the equations,
and it would be interesting to do so. Another approach is the use of ‘test alge-
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bras’ [SS06, KP09]. In the case of process calculi one naturally uses operational
methods; however the resulting axioms may not be very modular, or very natural
mathematically, and, all in all, in this respect the situation is not satisfactory.
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Appendix: The computational λ -calculus

In this appendix, we sketch (a slight variant of) the syntax and semantics of Moggi’s
computationalλ -calculus, orλc-calculus [Mog89, Mog91]. It has types given by:

σ ::= b | unit | σ ×σ | empty | σ → σ

whereb ranges over a given set of base types, e.g.,nat ; the type constructionTσ
may be defined to beunit → σ . The terms of theλc-calculus are given by:

M ::= x | g(M) | ∗ | inM | (M,M) | fstM | sndM | λx:σ .M | MM

whereg ranges over given unary function symbols of given typesσ → τ, such as
0 :unit → nat or succ : nat → nat , if we want the natural numbers, or op :
T(σ)× . . .×T(σ)→ T(σ) for some operation symbol from a theory for whichT is
the free algebra monad. There are standard notions of free and bound variables and
of closed terms and substitution; there are also standard typing rules for judgements
Γ ⊢ M : σ , that the termM has typeσ in the contextΓ (contexts have the form
Γ = x1 : σ1, . . . ,xn : σn), including:

Γ ⊢ M :empty
Γ ⊢ inM :σ

A λc-model (on the category of sets—Moggi worked more generally) consists of
a monadT, together with enough information to interpret basic typesand the given
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function symbols. So there is a given set[[b]] to interpret each basic typeb, and
then every typeσ receives an interpretation as a set[[σ ]]; for example[[empty ]] = /0.
There is also given a map[[σ ]] → T([[τ]]) to interpret every given unary function
symbolg : σ → τ. A termΓ ⊢ M : σ of typeσ in contextΓ is modelled by a map
[[M]] : [[Γ ]] → T[[σ ]] (where[[x1 :σ1, . . . ,xn :σn]] = [[σ1]]× . . .× [[σn]]). For example,
if Γ ⊢ inM :σ then[[inM]] = 0[[σ ]]o[[M]] (where, for any setX, 0X is the unique map
from /0 toX).

We define values and evaluation contexts. Values can be thought of as (syntax
for) completed computations, and are defined by:

V ::= x | ∗ | (V,V) | inV | λx:σ .M

together with clauses such as:

V ::= 0 | succ(V)

depending on the choice of basic types and given function symbols. We may then
define evaluation contexts by:

E ::= [−] | inE | (E,M) | (V,E) | EM |VE | fst(E) | snd(E)

together with clauses such as:

E ::= succ(E)

depending on the choice of basic types and given function symbols. We writeE[M]
for the term obtained by replacing the ‘hole’[−] in an evaluation termE by a term
M. The computational thought behind evaluation contexts is that in a program of the
form E[M], the first computational step arises withinM.
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