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On CSP and the Algebraic Theory of Effects

Rob van Glabbeek and Gordon Plotkin

Abstract We consider CSP from the point of view of the algebraic thedmffects,
which classifies operations as effecinstructorsand effectdeconstructorsit also
provides a link with functional programming, being a refirmrof Moggi's sem-
inal monadic point of view. There is a natural algebraic tigeaf the constructors
whose free algebra functor is Moggi’s monad; we illustrdiis by characterising
free and initial algebras in terms of two versions of the Ietédilures model of CSP,
one more general than the other. Deconstructors are dehlawihomomorphisms
to (possibly non-free) algebras.

One can view CSP’s action and choice operators as constsuatal the rest,
such as concealment and concurrency, as deconstructorgin@eahis programme
out results in taking deterministic external choice as troicsor rather than gen-
eral external choice. However, binary deconstructorsh siscthe CSP concurrency
operator, provide unresolved difficulties. We conclude tBspnting a combination
of CSP with Moggi's computationa -calculus, in which the operators, including
concurrency, are polymorphic. While the paper mainly cons€SP, it ought to be
possible to carry over similar ideas to other process dalcul
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1 Introduction

We examine Hoare’s CSP_[BHR84, Hoa85, Ras98] from the pdiniew of the
algebraic theory of effects [PP02, PP04, HER06, PPrO9ffirreraent of Moggi’'s
seminal ‘monads as notions of computation” [Mog89, Mgd9tiMB2]. This is a
natural exercise as the algebraic nature of both points tssilpility of commonal-
ity. In the algebraic theory of effects operations do nohalle the same character.
Some are effeaonstructorsthey create the effects at hand; some are effecon-
structors they respond to effects created. For example, raising espdion creates
an effect—the exception raised—whereas exception-hagdbisponds to effects—
exceptions that have been raised. It may therefore be stilege and even useful,
to classify CSP operators as constructors or deconstaidc@ansidering CSP and
the algebraic theory of effects together also raises thsilpiis/ of combining CSP
with functional programming in a principled way, as Moggi®nadic approach
provides a framework for the combination of computatiorifeets with functional
programming. More generally, although we mainly consid&PCa similar exer-
cise could be undertaken for other process calculi as theg adroadly similar
algebraic character.

The theory of algebraic effects starts with the observatiaheffect constructors
generally satisfy natural equations, and Moggi’s monasl precisely the free alge-
bra monad for these equations (an exception is the contimsathonad which is of
a different character). Effect deconstructors are treasdtbomomorphisms from the
free algebra to another algebra, perhaps with the samercasrthe free algebra but
with different operations. These operations can be givecdmgbinations of effect
constructors and previously defined deconstructors. That&n is much like that
of primitive recursive definitions, although we will not gent a formal definitional
scheme.

We mainly consider that part of CSP containing action, maémand external
choice, deadlock, relabelling, concealment, concurremyinterleaving, but not,
for example, recursion (we do, albeit briefly, consider thkeemesion with termi-
nation and sequencing). The evident constructors are tbonaprefix, and the
two kinds of choice, internal and external, the latter tbgetwith deadlock. The
evident deconstructors are relabelling, concealmentwoancy and interleaving.
There is, however, a fly in the ointment, as pointed out in BPrParallel opera-
tors, such as CSP’s concurrency and interleaving, arealbtiinary, and respond
to effects in both arguments. However, the homomorphic@augr to deconstruc-
tors, as sketched above, applies only to unary deconstajetthough it is possible
to extend it to accommodate parameters and simultaneoustidefs. Nonetheless,
the natural definitions of concurrency and interleaving dofall within the homo-
morphic approach, even in the extended sense. This proldemdthing to do with
CSP: it applies to all examples of parallelism of which we areare.

Even worse, when we try to carry out the above analysis for, ZSEBems that
the homomorphic approach cannot handle concealment. Tiultty is caused by
the fact that concealment does not commute with externatehBortunately this
difficulty can be overcome by changing the effect constngctwe remove external
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choice and action prefix and replace them by the deternireésternal choice oper-
ator(a; — P(a;) | ... | an — P(an)), where theg; are all different. Binary external
choice then becomes a deconstructor.

With that we can carry out the program of analysis, findingy ¢dné expected dif-
ficulty in dealing with concurrency and interleaving. Howe\t must be admitted
that then-ary operators are somewhat clumsy to work with, and it isast a priori
odd to take binary external choice as a deconstructor. Oathier hand, in[Hoa§85,
Section 1.1.3] Hoare writes:

The definition of choice can readily be extended to more tharatternatives, e.g.,
(x—=>Ply—=Q]...|z—=R)

Note that the choice symbdlis not an operator on processes; it would be syntactically
incorrect to writeP | Q, for processe® andQ. The reason for this rule is that we want to
avoid giving a meaning to

x—=>P|x—Q)

which appears to offer a choice of first event, but actuailg ta do so.

which might be read as offering some support to a treatmeithithkes determin-
istic external choice as a primitive (here = construct@ther than general external
choice. On our side, we count it as a strength of the algebvaary of effects that it
classifies effect-specific operations and places consgramthem: that they either
belong to the basic theory or must be defined according to ensetthat admits
inductive proofs.

Turning to the combination with functional programmingnsaer Moggi’'s
computationalA -calculus. Just as one accommodates imperative progragnmin
within functional programming by treating commands as espions of typanit,
so it is natural to treat our selection of CSP terms as exjoressf typeempty as
they do not terminate normally, only in deadlock. For precksguages such as
ACP [BK85,[BK86] which do have the possibility of normal termation, or CSP
with such a termination construct, one switches to regarghocess terms as ex-
pressions of typanit, when a sequencing operator is also available.

As we have constructors for eveFyX), it is natural to treat them as polymorphic
constructs, rather than just as process combinators. Bonge, one could have a
binary construction for internal choice, with typing rule:

M:o N:o
MMN:o
It is natural to continue this theme for the deconstruciassn:
M:.o M:o N:T
M\a:o MI|IN:oxT

where the thought behind the last rule is tWaandN are evaluated concurrently,
terminating normally only if they both do, when the pair c$ués returned individ-
ually by each is returned.
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In the case of CSP a functional programming language CSPMpocating CSP
processes has been given by Scattergood [Sca]; it is used&tyexisting CSP tools
including the Failures Divergences Refinement Checker (f-Bé&e[[Ros94]. Scat-
tergood’s CPSM differs from our proposal in several respedost significantly,
processes are not treated on a par with other expressiopartioular they cannot
be taken as arguments in functions, and CSP constructordegahstructors are
only available for processes. It remains to be seen if suiéfrdnces are of practi-
cal relevance.

In Sectior 8 we take deadlock, action, binary internal artdrexal choice as the
constructors. We show, in Theorém13.4, that, with the stahdguational theory,
the initial algebra is the ‘finitary part’ of the original Bo&es-Hoare-Roscoe fail-
ures model[BHR84]; which is known to be isomorphic to thetéinj, divergence-
andv -free part of the failures/divergences model, as well aditfitary, divergence-
andv -free part of the stable failures model, both of which arecdbed in [Ros98].
In Section’4 we go on to consider effect deconstructorsyiagiat the difficulty
with concealment and illustrating the problems with paladiperators in the (sim-
pler) context of Milner's synchronisation trees. A readdgerested in the problem
of dealing with parallel operators algebraically need amdgd this part, together
with [PPr09].

We then backtrack in Sectigh 5, making a different choiceoofstructors, as dis-
cussed above, and giving another characterisation of tharfirfailures model as
an initial algebra in Theorem3.2. With that, we can carryautprogramme, fail-
ing only where expected: with the binary deconstructorSdntiori 6 we add a zero
for the internal choice operator to our algebra; this camberpreted as divergence
in the stable failures model, and permits the introductiba oseful additional de-
terministic external choice constructor. Armed with ttgslt in Sectioril7, we look
at the combination of CSP and functional programming, feihg the lines hinted
at above. In order to give a denotational semantics we neetihéoreni 74, to
characterise the free algebras rather than just the ioitiel

As remarked above, termination and sequencing are accoatetbaithin func-
tional programming via the typenit ; in Sectiori 7.1l we therefore also give a brief
treatment of our fragment of CSP extended with terminatimhsequencing, mod-
elling it in the free algebra over the one-point set.

The concluding Sectidn 8 contains a brief discussion of #eegal question of
combining process calculi, or parallelism with a globarstavith functional pro-
gramming. The case of CSP considered here is just one exafriple many possi-
ble such combinations. Throughout this paper we do not densécursion; this en-
ables us to work within the category of sets. A more compleigtinent would deal
with recursion working within, say, the categoryfcpos (i.e., partial orders with
lubs of increasingv-sequences) and continuous functions (i.e., monotongiturs
preserving lubs of increasimg-sequences). This is discussed further in Se¢fion 8.
The appendix gives a short presentation of Moggi's companatA -calculus.



On CSP and the Algebraic Theory of Effects 5

2 Technical preliminaries

We give a brief sketch of finitary equational theories andrtiiee algebra monads.
For a fuller explanation see, e.d., [Bor94, AGM95]. Finjtaquational theories Th
are derived from a given set of axioms, written using a sigmeaX consisting of a
set of operation symbols om; together with their aritiea > 0. One forms terms
t from the signature and variables and the axioms then coofsejuationg = u
between the terms; there is a natural equational logic fdudieag consequences of
the axioms; and the theory consists of all the equationsalglg from the axioms.
A groundequation is one where both terms atesed meaning that they contain
no variables.

For example, we might consider the fragment of CSP with sigeal:2,Stop:0
and the following axioms for a semilattice (the first threéans) with a zero (the
last):

Associativity (xOy)Oz=x0O(yd2)
Commutativity XQy=yOox
Idempotence XOX=X

Zero XOStop =X

A Z-algebrais a structureZ = (X, (0p,, : X" — X)opnex ); We say thak is thecar-
rier of o7 and the op, are itsoperations We may omit the subscript on operations
when the algebra is understood. When we are thinking of agbatgas an algebra
of processes, we may say ‘operator’ rather than ‘operatohomomorphism be-
tween two algebras is a map between their carriers resgeibt@ir operations; we
therefore have a category afalgebras.

Given such a>-algebra, every ternh has adenotation[t]|(p), an element of
the carrier, given an assignmemif elements of the carrier to every variable; we
often confuse terms with their denotation. The algedatésfiesan equation = u if
t andu have the same denotation for every such assignment. $atisfies all the
axioms of a theory Th, itis called a Th-algebra; the Th-atgeliorm a subcategory
of the category of -algebras. Any equation provable from the axioms of a theory
Th is satisfied by any Th-algebra. We say that a theory T{hrizund) equationally
completewith respect to a Th-algebra if a (ground) equation is préevélom Th if,
and only if, it is satisfied by the Th-algebra.

Any finitary equational theory Th determines a free algebomadTr, on the
category of sets, as well as operations

(0] 0 ZTTh(X)n — TTh(X)

forany seiX and op n € X, such thatTrn(X), (0px : X" — X)opnes) is the free Th-
algebra oveK. AlthoughTry(X) is officially just a set, the carrier of the free algebra,
we may also us@mh(X) to denote the free algebra itself. In the above example the
monad is the finite powerset monad:

ZF(X) ={uC X |uisfinite}
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with Ox andStopy being union and the empty set, respectively.

3 A first attempt at analysing CSP

We consider the fragment of CSP with deadlock, action prifigrnal and external
choice, relabelling and concealment, and concurrency atedléaving. Working
over a fixed alphabek of actions we consider the following operation symbols:

Deadlock
Stop:0

Action
a——:1 (aeA)

Internal and External Choice
n,0:2
Relabelling and Concealment
f(—-),—\a:1

for anyrelabelling function f. A — A and actiora. If A is infinite, this makes the
syntax infinitary; as that causes us no problems, we do nad &vo

Concurrency and Interleaving
1151112

The signature of our (first) equational theory GSPfor CSP only has operation
symbols for the subset of these operators which are natdinalight of as construc-
tors, namely deadlock, action and internal and externatehtts axioms are those
given by de Nicola in[DeN85]. They are largely very natunatlanodular, and are
as follows:

e [J,Stop is a semilattice with a zero (i.e., the above axioms for a ktitie with
a zero).

e [1is a semilattice (i.e., the axioms stating the associgficibmmutativity and
idempotence of1).

e [ andn distribute over each other:

xO(yNz)=(xOy)N(xOz  xnN(yOz) = (xNy)d(xMnz)
e Actions distribute over?:

a— (xNy)=a—xMNa—y
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and:
a—XOa—y=a—xMNa—y

All these axioms are mathematically natural except thevdsth involves a rela-
tionship between three different operators.

We adopt some useful standard notational abbreviationsnEe1 we write
|_|i":1ti to abbreviatd; M...Mty, intendingt; whenn = 1. We assume that paren-
theses associate to the left; howeverds associative, the choice does not matter.
As M is a semilattice, we can even index over nonempty finite sestsn[ ], ti,
assuming some standard ordering of theithout repetitions. Ag] is a semilat-
tice with a zero, we can adopt analogous notat{ofls, ti and[J;., ti but now also
allowingnto be 0 and to be 0.

Asnlis a semilattice we can define a partial order for which it esgheatest lower
bound by writing C u as an abbreviation fariu =t; then, agg distributes over,
it is monotone with respect ta: that is, ifx C X andy C y thenxOy = X' Oy'. (We
mean all this in a formal sense, for example, thdtdf u andu C v are provable,
so ist C v, etc.) We note the following, which is equivalent to the disitivity of
M over, given that1 and O are semilattices, and the other distributivity, tiat
distributes over:

xM(yOz) =xM(ydz)n(xay) (1)

The equation can also be writtenxs (yJz) C (xOY). Using this one can derive
another helpful equation:

(xOa—z)N(yDa—w) = (xda— (znw))N(yOa— (zMw)) (2)

We next rehearse the original refusal sets model of CSPjatest to finite pro-
cesses without divergence; this provides a convenienegbffior identifying the
initial model of CSR0O) in terms of failures.

A failure (pair) is a pair(w,W) with w € A* andW Csn A. For every sef of
failure pairs, we define its set tfacesto be

tre ={w| (w,0) eF}
and for everyw € tre we define its set diuturesto be:
fute (w) = {a|wae trg}

With that arefusal set F(aka afailure se) is a set of failure pairs, satisfying the
following conditions:

1. eetre

2. waetrp =>wetrg

3. WW)eFAVCW= (wV)eF

4. (WW)eFAadfutg = wWu{a})eF

A refusal set idinitary if its set of traces is finite.
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The collection of finitary refusal sets can be turned into C§-algebraZ; by
the following standard definitions of the operators:

Stopy, = {(&,W) |W Ciin A}

a—g F={(eW)[agW}U{(awW) | (wW) e F}

F M2 G =FUG

FO% G = {(e,W) ]| (e, W) e FNGU{(WW) |w# g, (WW) € FUG}

The other CSP operation symbols also have standard intatipres over the collec-
tion of finitary refusal sets:

{(f(w),W) | (w, f~1(W) N fute (w)) € F}
Fla ={wW\aW)|wWu{a})eF}
FIIG ={(wWuV)[(wW)eF, (wV)e G}
Fll|G={(wW)]|(uW)eF, (vyW)eG, weulv}

with the evident action of on sequences and sets of actions, and whaeeis
obtained fromw by removing all occurrences @, and whereu|v is the set of
interleavings ofi andv.

Lemma 3.1.Let F be a finitary refusal set. Then for everyenmrg there are
Vi,...,Vh C fute(w), including fute (w), such that(w,W) € F iff WNV; = 0 for
some i€ {1,...,n}.

Proof. The closure conditions imply thét, W) is in F iff (w,WNfutg (w)) is. Thus
we only need to be concerned about paivaV) with W C fute (w). Now, as fug (w)
is finite, for any relevanfw,W) € F, of which there are finitely many, we can take
to be fuk (w)\W, and we obtain finitely many such sets. &s0) € F, these include
fute(w). O

Lemma 3.2.All finitary refusal sets are definable by close8R0) terms.

Proof. Let F be a finitary refusal set. We proceed by induction on the lemgt
the longest trace ifr. By the previous lemma there are s¥fs...,V,, including
fute (€), such thate,W) € F iff WNV; =0 for somei € {1,...,n}. DefineF,, for
ac fute (g), by:

Fa={(wW) | (aww) e F}

Then it is not hard to see that eahis a finitary refusal set, and that
F=[1[]a—Fa
i aeV,

As the longest trace iR, is strictly shorter than the longest one i the proof
concludes, employing the induction hypothesisl

We next recall some material from de Nicdla [DeN85]. L%tbe a collection of
sets; we say it isaturatedf whenevel. C L' C |J.Z, forL € £ thenl’ € .Z. Then
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a closed CSR1)-termt is in normal formif it is of the form:

|_| Da—>ta

LeZaclL

where.Z is a finite non-empty saturated collection of finite sets dioas and each
termt, is in normal form. Note that the concept of normal form is dedimecur-
sively.

Proposition 3.3.CSRO) is ground equationally complete with respectp.

Proof. Every term is provably equal in C&R) to a term in normal form. For the
proof, follow that of Proposition A6 i [DeN85]; alternaély, it is a straightforward
induction in which equationg]1) anfl (2) are helpful. Furttieis an immediate
consequence of Lemma 4.8 in_[DeN85] that if two normal forragehthe same
denotation inZ; then they are identical (and Lemimnal7.2 below establishesra mo
general result). The result then followsO

Theorem 3.4.The finitary refusal sets algebrd; is the initial CSR0) algebra.

Proof. Letthe initial such algebrabe I. There is a unique homomisrph: | — % .
By Lemmal3.2h is a surjection. By the previous propositio#; is complete for
equations between closed terms, andh$® an injection. Sd is an isomorphism,
completing the proof. O

4 Effect deconstructors

In the algebraic theory of effects, the semantics of efltonstructorssuch as
exception handlers, is given using homomorphisms fromdfgebras. In this case
we are interested ilicsy) (0). This is the initial CSPO) algebra %, so given a
CSRDO) algebra:

o = (Tespn)(0),Ma,Stopy,, (@ =), 0u)
there is a unique homomorphism:
h: %; — o

Relabelling We now seek to definé(—): Tcsgm) (0) — Tesr)(0) homomorphi-
cally. Define an algebrRl on Tesy o) (0) by putting, for refusal sets, G:

Stopr| = Stopg,

(a—r F)=(f(a) =% F)
F|_|R|G:F|_|to,?fG FDR|G:FD%]‘G
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One has to verify this gives a C8P)-algebra, which amounts to verifying that the
two action equations hold, for example that, forRIG:

a—ri (FMrIG) = (@a—r F)Mri(@—ri G)
which is equivalent to:
f(a) = (FNz G) = (f(a) =% F) Nz (f(a) =% G)

We therefore have a unique homomorphism

K E) RI
and so the following equations hold over the alge##ka
hri(Stop) = Stop

hri(@a— F) = f(a) = hri(F)
hri(FMG) =hgi(F)Mhg(G)  hr(FOG) =hri(F) Ohri(G)

Informally one can use these equations to defigeby a ‘principle of equational
recursion’ but one must remember to verify that the implicit algebbeys the re-
quired equations.
We usehg, to interpret relabelling. We then immediately recover thmiliar
CSP laws:
f(Stop) = Stop

fla—x) =f(a) = f(x)
fxny) =) fy)  fxOy) =fx)oOfy)
which we now see to be restatements of the homomorphismaifeting.

Concealment There is a difficulty here. We do not have that
(FOoG)\a=F\aOG\a

but rather have the following two equations (taken from [[BEN:

((a—F)oG)\a=F\an((FoG)\a) (3)
([(JaFna=[Ja(R\a) (4)
i=1 i=1

where nog; is a. Furthermore, there is no direct definition of concealmeatan
equational recursion, i.e., there is no suitable choicelgétaa, 0., etc. For, if
there were, we would have:
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(FoG)\a=F\aoy, G\a (5)
So if a does not occur in any trace Bf or G’ we would have:

Foy,G = F’\a O G’\a
= (F0G)\a
=Fn0G

but, returning to equatiofi}(53,certainly does not occur in any traceffa or G\a
and so we would have:

(FoG)\a=F\aoy,G\a
=F\agdg G\a

which is false. It is conceivable that although there is mea@ihomomorphic defi-
nition of concealment, there may be an indirect one whererdtinctions (possibly
with parameters—see below) are defined homomorphicall}candealment is de-
finable as a combination of those.

4.1 Concurrency operators

Before trying to recover from the difficulty with concealmewe look at a further
difficulty, that of accommodating binary deconstructomtigularly parallel oper-
ators. We begin with a simple example in a strong bisimutationtext, but rather
than a concurrency operator in the style of CCS we consideaoalogous to CSP’s

Il

We take as signature a unary action prefix;, for a € A, a nullaryNIL and
a binary sumt. The axioms are that is a semilattice with zerdIL; the initial
algebra is then that of finite synchronisation tr&8s Every synchronisation tree
has a finite depth and can be written as

n
Zai-Ti
=

for somen > 0, where tha; are also synchronisation trees (of strictly smaller depth)
and where no paifa;, ;) occurs twice. The order of writing the summands makes
no difference to the tree denoted.

One can define a binary synchronisation opergton synchronisation tregs—=
yiai.ti andt’ = ¥ ; bj.1; by induction on the depth af (or T'):

Tt = Zb a.(ti || )
& =b;

Looking for an equational recursive definition|gfone may try a ‘mutual (paramet-
ric) equational recursive definition’ ¢f and a certain family|? with x,y,z varying
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overST:
NIL ||z = NIL
(x+y)|[z=(x[[2+(y[l2)
ax|lz =x]]Pz

and

Z|[2NIL = NIL
z[|® (x+y) = (z]*x) + (z|[*y)

L fa(z||® (fb=a)
Z|*bx _{NIL (if b a)

Unfortunately, this definition attempt is not an equatiargursion. Mutual (para-
metric) equational recursions are single ones to an algabea product. Here we
wish a mapST — ST x ST. Informally we would write such clauses as:

(x+y) [z, | (x+y)) = (x| D+ (Y| 2), Z|F )+ (z][*y)

with the recursion variables, herey, on the left for|| and on the right foi|2.
roever x|z, a(z]1) (f b=a)

arw | X2z, a(z||x) (fb=a
(ax||z, z|] b'X>_{<X||aZ,NIL> (if b a)

does not respect this discipline: the recursion variabdge R, (twice) switches
places with the parameter

We are therefore caught in a dilemma. One can show, by irmtuota the depth
of synchronisation trees, that the above definitions, vieassequations fdf and||?
have a unique solution: the expected synchronisation tgdtaand the functions
||* defined on synchronisation treesndt’ =y ; bj.7j by:

T = S allT)
bj=a

So we have a correct definition not in equational recursiom&. So we must either
¢ find a different correct definition in the equational recansiormat

or else

¢ find another algebraic format into which the correct defomitits.

When we come to the CSP parallel operator we do not even gat as fve did
with synchronisation trees. The problem is like that witlhc@alment: the distribu-
tive equation:

(FOF)[IG=(FIIG)O(F'|IG)

does not hold. One can show that there is no definitio afialogous to the above
one for synchronisation trees, i.e., there is no suitalbdécetof algebrai, etc, and
functions||2. The reason is that there is no binary operatbon (finitary) failure
sets such that, for at, G,H we have:
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(FOF)IG=(FIIG T (F'IIG)

For suppose, for the sake of contradiction, that there is an@perator. Then, fixing
F andF’, chooseG suchthafF ||G=F,F'||G=F and(FOF') ||G= (FOF’).
Then, substituting into the above equation, we obtainBatF’ = F 0’ F’ and so
the above equation yields distributivity, which, in facbes$ not hold. As in the case
of concealment, there may nonetheless be an indirect defirt ||.

A similar difficulty obtains for the CSP interleaving operatlt too does not
commute with, and it too does not have any direct definition (the argunseliie
that for the concurrency operator but a little simpler, hak = Stop). As in the
case of the concurrency operator, there may be an indiréaito.

5 Another choice of CSP effect constructors

Equations[(B) and{4) do not immediately suggest a recudsfiaition of conceal-
ment. However, one can show that, for distinct actigné = 1,n), the following
equation holds between refusal sets:

([Ja = F)\aj = (F\aj) n((F\aj) o[ Ja — (R\a)))
i—1 i

where 1< j < n. Taken together with equatiol (4), this suggests a recdsini-
tion in terms of deterministic external choice. We therefoow change our choice
of constructors, replacing binary external choice, actirefix and deadlock by de-
terministic external choice.

So as our second signature for CSP we take a binary operatiobhcs 1 of
internal choice and, for angeterministic action sequenég(i.e., any sequence of
actionsg; (i = 1,n), with theg; all different andn > 0), ann-ary operation symbol
[ of deterministic external choice. We writéy(ts, . ..,t,) as[]i, at; although it
is more usual to use Hoare’s notatim — t; | --- | an — ty); we also usetop to
abbreviatd ];().

We have the usual semilattice axioms for Deterministic external choice is
commutative, in the sense that:

Daixi = Dan(i)xn(i)
i i

for any permutatiomr of {1,...,n}. Given this, we are justified in writing determin-
istic external choices over finite, possibly empty, setsctibas,[ ], ata, assuming
some standard ordering of pai&t;) without repetitions.

For the next axiom it is convenient to write; — t1) O[], ati for (], ait; (for
n > 0). The axiom states that deterministic external choicidiges over internal
choice:
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(a1 — (xNX)) O Dax. = ( a;—X) O D:’M) M <(a1—>x’) 0 Da;xi>
i=2 i=2

This implies that deterministic external choice is monetarith respect ta_.
We can regard a, possibly nondeterministic, external eéhaiowhich thes; need
not be all different, as an abbreviation for a deterministie, via:

[Jat= [] b(ﬂti) (6)
i an}

aj=b

With that convention we may also writg — t; O |:|i”:2a;ti even wherg; is some
g, fori > 1. We can now write our final axiom:

(Dam) (b1—>y1 DDbeJ> C (by—y1) 0 [ Ja (7)

j=2

Restricting the external choidd; — y1) O |:|J- bjy; to be deterministic gives an
equivalent axiom, as does restrictinfja;x; (in the presence of the others).

Let us call this equational theory C8PR The finitary refusal sets form a C§R
algebraZys with the evident definitions:

F gy, G -~ FUG
(Oa) 7 (Fi,-. . Fn) = {(&,W) [WN{ay,...,an} = 0} U{(@w,W) | (W W) € K}

Theorem 5.1.The finitary refusal sets algebr#&y; is complete for equations be-
tween closeSR|) terms.

Proof. De Nicola’'s normal form can be regarded as written in the atigre of

CSH]), and a straightforward induction proves that every §5frm can be re-
duced to such a normal form using the above axioms. But twh socmal forms
have the same denotation whether they are regarded agi38Pas CSP|) terms,

and in the former case, by Lemma 4.8/of [DelN85], they are idaht O

Theorem 5.2.The finitary refusal sets algebey; is the initial CSR|) algebra.

Proof. Following the proof of Lemm&a_3]2 we see that every finitarysal set is
definable by a closed CE term. With that, initiality follows from the above com-
pleteness theorem, as in the proof of Thedrerh 3.

Turning to the deconstructors, relabelling again has ég$tifarward homomor-
phic definition: given a relabelling functioh: A — A, hgy: Tesg)) (0) — Tesg)) (0)
is defined homomorphically by:

hri(FMG) = hgy(F) Mhgi(G)
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he([_]aiF) [|f )hei(F;

As always one has to check that the implied algebra satigfe®dquations, here
those of CSH).

There is also now a natural homomorphic definition of coroealt, —\a, but,
surprisingly perhaps, one needs to assumerthistavailable. For everg € A one
definesha: Tesg)) (0) — Tesp))(0) homomorphically by:

ha(F NG) = ha(F) Mha(G)

ha(Fj) M (ha(Fj) 02  aha(F)) (if a= aj, where1< j <n)
S B e

Verifying that the implicit algebra obeys satisfies the lieggh equations is quite a
bit of work. We record the result, but omit the calculations:

Proposition 5.3.0ne can define SK]|)-algebra Con on &g/ (0) by:
F HConG - F I_I G

_ (FN(FOO,aR) (fa=a)
(Ha)con(F, ..., Fn) = {|:J|I aiFIJ 7 (ifa=# aJny a)

The operaton is, of course, no longer available as a constructor. Howéwean
alternatively be treated as a binary deconstructor. Whil&réatment as such is no
more successful than our treatment of parallel operatoisaiso no less success-
ful. We define it simultaneously witfn+1)-ary functionsJ®-# on Tegg) (0), for
n > 0, where theg; are all distinct. That we are defining infinitely many funaiso
simultaneously arises from dealing with the infinitely madsterministic choice
operators (there would be be infinitely many even if we cozrgid them as param-
eterised on tha's). However, we anticipate that this will cause no real diffiy,
given that we have overcome the difficulty of dealing withdsyndeconstructors.

Here are the required definitions:

(FI_IF’)DG: (FDG)H(F/DG)
(Da-IFi)DG: (F]_,..,7Fn) \:\al"'a”G

(Fl,...,Fn) [8L--an (GWG/) = ((Fl’._.7|:n) [31-an G) ((F17 LF) DO @ G/)
o % 00) - 0+ 0L (o0 mE o)) O
i

where, in the last equation, the notational convenfan— t;) O |:|i“:2a;ti is usedn
times. It is clear thaty together with the functions

D% Tesp) (0)™ — Tesry) (0)
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defined by:
P2 (R, R, G) = ([ JaR) OG 9)
i

satisfy the equations, and, using the fact that all finitafysal sets are definable by
normal forms, one sees that they are the unique such fusction

We can treat the CSP parallel operdian a similar vein following the pattern
given above for parallel merge operators in the case of sgnéation trees. We
define it simultaneously witin+1)-ary functions| %1% on Teggy) (D), for n > 0,
where theg; are all distinct:

(FNF)|G=(F||G)N(F'||G)
(DaiFi) |G = (Fu,....R) || G

(Fla EER) Fn) ||a1...an (Gﬂ G/) = ((Fla ceey Fn) ||a1'"a" G)n ((Fl, e Fn) O&--an G/)
(Fu,.Fo) [P ((JoiG)) = [] (R 1l Gy) (10)

] aj=bj

Much as before|| together with the functiong®-a: Togg ) (0)™! — Tesry) (0)
defined by:

||a1...an (F,....,Fn,G) = (Dai':l) IIG

are the unique functions satisfying the equations.

Finally we consider the CSP interleaving operéfoie define this by following
an idea, exemplified in the ACP literature [BK85, BK86], ofigmg an associative
operation into several parts. Here we sfjlitnto aleft interleavingoperator||' and
aright interleavingoperatoi||" so that:

FlIG=(F G O(FIG)

In ACP the parallel operator is split into three parts: a ta#frge, a right merge
(defined in terms of the left merge), and a communication eidrga subtheory,
PA, there is no communication, and the parallel operatox, @ interleaving one,
is splitinto left and right part$ [BKE6]. The idea of splitfj an associative operation
into several operations can be found in a much wider contexG08] where the
split into two or three parts is axiomatised by the respeatiotions of dendriform
dialgebra and trialgebra.

Our left and right interleaving are defined by the followibgtary deconstructor’
equations:
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FAF)II'G=FlI'e)nFE (' G)

ar I'e=a(RlI'e) oI 6))
i=1 i

Gl|" (FOF) = (Gl F)N(GIII"F)

GlI"([Jar) =[Ja(GII'R)O(GIIR)) (11)
i=1 i

As may be expected, these equations also have unique sEutiow given by:

FIlII'G={(e,W)]|(g,W)eFYU{(WW) | (uW)eF, (vW)eG, weulv}
FlII'G={(e,W)](g,W) e GLU{(WW) | (uW) eF, (vW)eG, weu| v}

whereu|'v is the set of interleavings af andv which begin with a letter ofi, and
u|"vis defined analogously. It is interesting to note that:

FII'GnG)=(Fll'GnF|l'G)

and similarly for]||".

6 Adding divergence

The treatment of CSP presented thus far dealt with finiterdesgce-free processes
only. There are several ways to extend the refusal sets nob&elctior B to infinite
processes with divergence. The most well-known model idatheres/divergences
model of [Hoa85], further elaborated in [Ro$98]. A charaisti property of this
model is that divergence, i.e., an infinite sequence ofatieactions, is modelled as
Chaos a process that satisfies the equation:

Chaog1x = Chaos1x= Chaos (12)

So afterChaosno further process activity is discernible.

An alternative extension is theable failuresmodel proposed iri [BKO87], and
also elaborated ir [Ros98]. This model equates procesaesltbw the sameb-
servations where actions and deadlock are considered observabldjaigence
does not give rise to any observations. A failure gailW/)—now allowingW to
be infinite—records an observation in whistrepresents a sequence of actions be-
ing observed, anw/ represents the observation of deadlock under the assumptio
that the environment in which the observed process is rgnaliows only the (in-
ter)actions in the sal/. Such an observation can be made if after engaging in the
sequence of visible actiong the observed process reaches a state in which no fur-
ther internal actions are possible, nor any actions froms#t®V. Besides failure
pairs, also traces are observable, and thus the obseneitideibur of a process is
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given by a paiT,F) whereT is a set of traces arfelis a set of failure pairs. Unlike
the model#; of Sectior B, the traces are not determined by the failumes plai fact,
in a process that can diverge in every state, the set of éafairs is empty, yet the
set of traces conveys important information.

In the remainder of this paper we add a consfano the signature of CSP thatis
a zero for the semilattice generatedryT his will greatly facilitate the forthcoming
development. Intuitively, one may think @ as divergence in the stable failures
model.

W.r.t. the equational theory C8R) of Sectiori 8 we thus add the constéhand
the single axiom:

XMNQ =x (13)

thereby obtaining the theory C8R, Q). We note two useful derived equations:

XM (QaOy) = xMn(xay)
(Qox)nN(Qoy) = (Qox)o(Qay) (14)

Semantically, rocesss now given by a paifT,F), whereT is a set of traces
andF is a set of failure pairs that satisfy the following conditso

eeT

.waeT=weT

WW)eF=weT

WW)eFAVCW= (wV)eF

WW)eFAVaeV.wa¢T = (WWUV)eF (whereV C A)

agrONPE

The two components of such a p&rare denotedp andFp, respectively, and for
w € Tp we define fus(w) := {a € A| wac Tp}. We can define the CSP operators
on processes by setting

PopQ= (Pops Q,Pop; Q)

where op; is given by:

Stops, = {&}
a—gP={euf{aw|we Tp}

PMzQ =TeUTq

PO7sQ =TpUTg

f7(P) ={f(w)|weTp}

P\za ={w\a|weTp}

Pllz Q ={w|weTp, we To}

Plllz Q={w|ueTp, ve To, we u|v}

and op, is given as op, was in Sectio3, but without the restriction to finite sets
W in definingStop,,. For the new proces? we set

Qg ={¢} and Qz=0
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This also makes the collection of processes into a(CSR)-algebra,#.
A processP is calledfinitary if Tp is finite. The finitary processes evidently form
a subalgebra of7; we call it.%.

Lemma 6.1.Let P be a finitary process. Then, for everygwp there is an n> 0
and\,..., Vi Cfute (w) such thatw, W) € Fp iff WNV; = 0 for some ie {1,...,n}.

Proof. Closure conditions 4 and 5 above imply tHatW) € Fp if, and only if,
(w,W Nfutp(w)) € Fp. Thus we only need to be concerned about paitsV) with
W C futp(w). Now, as fup(w) is finite, for any relevantw,W) € F, of which there
are finitely many, we can také to be fukb(w)\W, and we obtain finitely many such
sets. O

Note that it may happen that= 0, in contrast with the case of Leminal3.1.

Lemma 6.2.All finitary processes are definable by close8R 1, Q) terms.

Proof. Let P be a finitary process. We proceed by induction on the lengtihef
longest trace ip. By the previous lemma there are s€is. .., V,, for somen > 0,
such that(e,W) € F iff WNV; = 0 for somei € {1,...,n}. DefineT, andF,, for
ac Tp, by:

Ta={w|awe Tp} Fa={(WwW)| (awW) € Fp}

Then itis not hard to see that ealeh:= (T,, F,) is a finitary process, and that

P=([1[]a=r| n |QO[]a=P

i aeV acTp

As the longest trace ifi, is strictly shorter than the longest oneip, the proof
concludes, employing the induction hypothesisl

Proposition 6.3.CSR 0, Q) is ground equationally complete with respect to both
Z and %.

Proof. This time we recursively define a normal form as a GSR2)-term of the

form
[1[]a=ta or Qo[]a—ta
LeZacL acK

where.Z is a finite non-empty saturated collection of finite sets dioas, K is a
finite set of actions, and each tetsis in normal form. Every term is provably equal
in CSRO, Q) to a term in normal form; the proof proceeds as for PropasiEid,

but now also using the derived equatiohs| (14). Next, by Lefd@aelow, if two
normal forms have the same denotatiorginthen they are identical. So the result
follows for .%, and then for% too, as all closed terms denote finitary processes.
O
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Theorem 6.4.The algebra%; of finitary processes is the initi@@ SR, Q) alge-
bra.

Proof. Let the initial such algebra be I. There is a unique homomisrmph: | — %.
By Lemmal6.2h is a surjection. By the previous propositio% is complete for
equations between closed terms, ant soan injection. Henckis an isomorphism,
completing the proof. O

As in Sectiorl b, in order to deal with deconstructors, pakidy hiding, we re-
place external choice by deterministic external choice aVailability ofQ permits
useful additional such operators. The equational theofy(CQ) has as signature
the binary operation symboi, and for any deterministic action sequergehe
n-ary operation symbolg]; (as in Sectiofi]5), as well as the newary operation
symbolsljg, forn> 0, which denote a deterministic external choice wilas one
of the summands. We adopt conventions@ﬁ analogous to those previously in-
troduced for J4(ts, ... ,tn). We write|:|§ (tg,...,th) @asQ O D?:la;ti. We also write
Qo (c — t1) O[]_,ct; for QO[J]_; cjtj, so that thegj (j = 1,n) must all be
distinct.

The first three groups of axioms of C§R2) are:

e 1,Q is a semilattice with a zero—hef@ is the 0-ary case df]5,

e both deterministic external choice operatflg and[]$ are commutative, as
explained in Sectiol]5, and

e both deterministic external choice operators distributeranternal choice, as
explained in Sectionl5,

Given commutativity, we are, as before, justified in writigterministic exter-
nal choiceq ], ata or Q O[], ata, over finite, possibly empty, sets of actions
assuming some standard ordering of péds,) without repetitions. Next, using the
analogous convention tbl(6) we can then also unders(ﬂm@?zl cjtj, and so also
QoO(ci—t)O D?:z citj, even when the; are not all distinct. With these conven-
tions established, we can now state the final group of axidimsse are all variants
of Axiom (7)) of Sectiori b, allowing each of the two determtii®xternal choices
to have anm2-summand:

n
<QD|:|aiXi> n{Qo(—y)a[ by | € Qo(b—y) o[ Jax
i j=2 i

n
<QD|:|aiXi> M (b1—>Y1)D|:|bjyj C QD(b1—>y1)D|:|axi
i =2 i

<_Daaxi> N | eo®—y)o[Jby | © (br—y)o[Jax

j=2
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<|]a4xi> M ((b1—>y1)D|:|bjyj) c (bl—>)’1)\:\|]aixi (15)

i =2

As in the case of Axiom[{7), restricting any of these choi@®é¢ deterministic
results in an axiom of equivalent power. We note two useftivdd equations:

[axin(@o[ o) = [Jaxn (Jax o[ by
i j i i j

Qo[ Jax)n@o[Jby) = Qo[ Jax)of Joby (16)
i j i j

where two further notational conventions are employ@d ; ait;) O (DT:l bjt;)
stands for|:|rk":+1n oty wherecy = a, andt, =ty for k =1,m, andc, = by_n, and
t/ =t . fork=m+1,m+n;and(Q O, ati) O (D?:lbjtj) is understood anal-
ogously. In fact, the first three axioms 6f {15) are also ddaie from [I6), in the
presence of the other axioms, and thus may be replacéd hy (16)

The collection of processes is turned into a CSR)-algebra%y as before, writ-
ing:

Popg, Q= (Popg, Q,Popy, Q)

and defining o, and opy, in the evident way:

Pl—l%Q :TPUTQ

(g 7 (PL,...,P) = {e}u{aw|we Tr}
(Dg)%(Pla---,Pn) ={e}u{aw|weTp}
(025 (P, P) = {(@W,W) | (W W) € Fp}

with Mg, and([J3)#, given just as in Section 5. Exactly as in Secfién 5, but now
using the derived equatioris {16), we obtain:

Theorem 6.5.The algebraZ, is complete for equations between clo§&8R|, Q)
terms.

Theorem 6.6.The finitary subalgebra#; of .7 is the initial CSR|, Q) algebra.

Turning to the deconstructors, relabelling and concealro@m again be treated
homomorphically. For relabelling bl one simply adds the equation:

hR|<omDaH> =QD_Df(a>hR.<F.>

to the treatment in Sectidd 5, and checks that the impliedbaly satisfies the
equations. Pleasingly, the treatment of concealment casirbplified in such a
way that the deconstructan is no longer needed. For eveayc A one defines
ha:Tesr,0)(0) — Tesr),@) (@) homomorphically by:
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ha(PM1Q) = ha(P) Mha(Q)

n 5\ [ha(P)(QO[;aha(R)) (if a=aj, wherel< j <n)
" (,DlaF*) {5 ) 7 (i a anya)

o o) _ S ha(P) (@00 aha(R)) (if a= aj, wherel< j <n)
ha (Q mﬁaﬂ) - {Q O ahaR) (if a anya)

Note the use of the new form of deterministic choice here. Rasagain to verify
that the implicit algebra obeys satisfies the required egusit The treatment of the
binary deconstructors, || and||| is also a trivial adaptation of the treatment in
Sectior k. For] one adds a further auxiliary operatof®2-2 and the equations:

(Q DDaiR) 0Q = (Py,...,RP,) 0%a&-aQ

(Pr,..,P) 0242 (QNQ) = ((Py,...,P) 0222 Q)1
((Py,...,Pn) 02820 Q)

(Pr,.... o) 0% ([ ]bjQy) = (@[ JaR) o[ ]b)Q;
j i j
(Py,...,Pn) O%%-an (Q mejQJ) = (QDD&@H)DDijJ
j i j
(Pe.....P) 0% (QO[]bjQy) = (@ [JaR) o[ ]biQ;
j i j
For || one adds the auxiliary operatg?2@ and the equations:

(@0[JaR) Q= (Pu...Ry) |2+ Q

(F)l7 e Pn) ||Q,al...an (QI_I Q/) — ((Pla o Pn) ||Q,a1...an Q) =l
((P,...,Py) 0% & Q)

(Py,.... P[220 ([(]bjQ) = Qo [] a(R | Q)
j

g=bj

(P,....P) |22~ (@O |0jQ) =QO [ ] a(R Q)
j a=bj

(Pe,-..,P) [P (@O ]0jQ) = @0 [] a(R 11 Q))
j g=bj

Finally, for ||| one simply adds extra equations:
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@o[Jar) I'e=2o[Ja(R ' Qo (Rl Q)

i=1 i

QlI"(@o[Jar) = QD_Daa((QIII' R)OQIIMR))

i=1

7 Combining CSP and functional programming

To combine CSP with functional programming, specificallg tomputationah -
calculus, we use the mondgsp) o) for the denotational semantics. As remarked
above, CSP processes then become terms ofetypey . However, as the construc-
tors are polymorphic, it is natural to go further and look potymorphic versions
of the deconstructors. We therefore add polymorphic cantgroA. as follows:

Constructors

M:o N:o M:o
MMN: o a—->M:o
Unary Deconstructors

M:o M:o
f(M):o M\a:o
for any relabelling functiorf, and anya € A. (One should really restrict the allow-
able relabelling functions in order to keep the syntax figija

Binary Deconstructors
M:o N:o M:o N:t M:o N:t
MON:o MI|IN:oxT MI[|N:oxT

The idea of the two parallel constructs is to evaluate thetemms in parallel and
then return the pair of the two values produced. We did ndude syntax for the
two deterministic choice constructors as they are defirfable a — — andQ with
the aid of thex deconstructor.

For the denotational semantics, the semantics of typevengs usual using
the monadlcsy).0), Which we know exists by the general considerations of Sec-
tion[2. These general considerations also yield a semdotitise constructors. For
example, for every set we have the map:

Mx : Tesry,0) (X)? = Tesry,0) (X)

which we can use foX = o] to interpret term® MN: .
The homomorphic point of view also leads to an interpretatibthe unary de-
constructors, but using free algebras rather than jushitialione. For example, for
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relabelling byf we need a function:

hri: Tesr@) (X) = Tesr.e) (X)

We obtain this as the unique homomorphism extending thepi— Tesg) o) (X),

equippingTcsg|,o) (X) with the algebra structure’ = (Tesg|.0) (X), Mar, s fo)
where
XMy Yy =XIxy

for X ye TCSF(\,Q)(X)i
(Da)ﬂ/(xlv e 7Xn) = (Df(a))x(xlv s ,Xn)

and
(Dg)of (X1, -5 Xn) = (Dgfz(a))x(xl, ey Xn)

Concealment-\a can be treated analogously, but now following the treatment
in the case of#y;, and defininge by:

XMz y=XMxy
for X,y e TCSF(\,Q)(X)’

<D9ﬂabnqm>_{

and

X 1(QO[Ji &%) (if a=aj, wherel< j <n)
(i ax (if a# anya)

Q _ [xin(Qo[iax) (if a=aj, wherel< j <n)
<DMWWHUMM—{QDDPﬂm (faay.

We here again make use of the deterministic choice operaderavailable by the
presence of2.

However, we cannot, of course, carry this on to binary dettoo®rs as we have
no general algebraic treatment of them. We proceed instgagiving a concrete
definition of them (and the other constructors and decocitrs). That is, we give
an explicit description of the free CEPQ)-algebra on a se{ and define our oper-
ators in terms of that representation.

An X-traceis a pair(w,x), wherew € A* andx € X; it is generally more sug-
gestive to write(w, x) aswx. For any relabelling functiori, we setf (wx) = f(w)x,
and, for anya € A, we setwx\a = (W\a)x. An X-processs a pair(T,F) with T a
set of traces as well a&-traces, andr a set of failure pairs, satisfying the same five
conditions as in Sectidd 6, together with:

2 wxeT=weT (forxe X)
The CSP operators are definedXiprocesses exactly as before, except that the
two parallel operators now have more general types:

[[x.v:l1x.y: Tesry,e) (X) X Tesrp,a) (Y) = Tesrjo) (X xY)
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We take fup(w) := {a€ A|wae Tp}, as before.

Q7(x) = {¢}

Stopyx) = {&}

Stopyxy = {(&W)|WCA}

a—gsx)P = {e}U{aw|we Tp}

a—gx) P = {(e,W)[ag WU {(awW) | (WW) € Fp}
Prlg(x) Q =Tp UTQ

Pﬂg;(x) Q = U FQ

PDg(X)Q = TpUTQ

POzx)Q = {(&W)|(e,W)eFpNFU{(WW) |w#¢€, (WW) e FpUFg}
fr)(P) = {f(w)|weTp}

feoo(P) = {(f(w),W) | (w, f~H(W)Nnfutp(w)) € Fp}
P\g(x)a = {W\a | we Tp}

Paxa = {WaW)|(wWu{a}) € Fp}

P ||y(x7y) Q = {w|weTpNToNA* }U{W(Xy) | wxe Tp, wye To}
Pllzxy)Q = {(wWUV) [ (WW) € Fp, (WV) € Fq}
Plllzxxy) Q = {w[ueTeNA", ve TN A", weu|v}U

{w(x,y) | uxe Tp, vye To, We u|v}
P |||ﬂ]i(X,Y) Q= {(WaW) | (U,W) €Fp, (WW) € Fo, W€U|V}

Here, much as before, we wriop(x) Q= (Popz (x) Q,P 0py(x) Q) when defin-
ing the CSP operators oX-processes. ThE-processes also form the carrier of a
CSR(|, Q)-algebraZy(X), with the operators defined as follows:

PMzx) Q = TpUTg
P”gdooQ = FpUFg
(02) 700 (P, Br) = {e}u{aw|we Tp}

(O2) 2,00 (Pis- - Pr) = {(@WW) | (WW) € F}
(Oa) 700 (P, -, Pr) = {eju{aw|we Tp}
(Ha)zgx) (P, -+, P) = {(&,W) [Wn{ay,...,a} =0} U

{(@wW) [ (WW) € Fr}

The finitaryX-processes are those with a finite set of tracesatdces; they form
the carrier of a CSR, Q)-algebraZ: (X).

We now show that%;(X) is the free CSH, Q)-algebra oveiX. As is well
known, the free algebra of a theory Th over a Xeis the same as the initial al-
gebra of the theory Thobtained by extending Th with constantfor eachx € X
but without changing the axioms. The unit mapX — T, (X) sendsx € X to the
denotation ok in the initial algebra. We therefore show théj; (X), extended to a
CSH|,Q)*-algebra by taking

[X] = ({x},0)  (forxeX)
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is the initial CSP|, Q)" -algebra. We begin by looking at definability.

Lemma 7.1.The finitary X-processes are those definable by cld38&|, Q)"
terms.

Proof. The proof goes just as the one for Lemimd 6.2, using that Lemihaplies
just as well to finitaryX-processes, but this time we have

P=[[Ja=Pn |Qo[]a=P| 0 []x O

i aeV, acTp XeTp

Next, we say that a closed C§R2)*-termt is in normal formif it is has one of
the following two forms:

[1[Jatn[]x or <QD|:|ata>l‘||_|)_(

LeZaclL xed acK xed

where, as appropriate? is a finite non-empty saturated collection of finite sets of
actions,J Ciin X, K Ciin A, and each terrty is in normal form.

Lemma 7.2.Two normal forms are identical if they have the same dermtaiti
Fe (X).

Proof. Consider two normal forms with the same denotatiofFn(X), say(T,F).
As (g,0) € F iff F is the denotation of a normal form of the first form (rathentha
the second), both normal forms must be of the same form. Theis are two cases
to consider, the first of which concerns two forms:

MO 1 Oawnx

LeZaclL xed ey del! xeJ

We argue by induction on the sum of the sizes of the two norarai$. We evidently
have thatl = J'. Next, ifa e |J.Z thenae T and soa € |J.#’; we therefore have
thatJ.£ C U-Z'. Now, if L € £ then (g,(U-£")\L) € F; so for somel’ € &
we havel' N ((UZ")\L) =0, and sd_’ C L. As .’ is saturated, it follows by the
previous remark thdt € .#’. So we have the inclusia®’ C .’ and then, arguing
symmetrically, equality.

Finally, the denotations df andt;, forac |J.£ =%’ are the same, as they
are determined by andF, being{w|awe T} and{(w,W) | (awW) € F}, and
the argument concludes, using the inductive hypothesis.

The other case concerns normal forms:

(QDDa@)I—IH)_( <QDDa’tg>m|_|>_<

ackK xed aeK’ xeJ

Much as before we find=J, K =K', andty =t forac K. O
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Lemma 7.3.CSK|, Q)" is ground complete with respect t#y; (X).

Proof. As before, a straightforward induction shows that evergnteas a normal
form, and then completeness follows by Lenima 7.2.

Theorem 7.4.The algebraZy; (X) is the freeCSR], Q2)-algebra over X.

Proof. It follows from Lemma§ 71 anfl 7.3 thafiy (X) " is the initial CSR|, Q)" -
algebra. O

As with any finitary equational theory, CEPQ) is equationally complete with
respect to%y; (X) whenX is infinite. It is not difficult to go a little further and show
that this also holds wheKX is only required to be non-empty, and, evenAifs
infinite, when it is empty.

Now that we have an explicit representation of the free CSP)-monad in terms
of X-processes, we indicate how to use it to give the semantiteafomputational
A-calculus. First we need the structure of the monad. As wevkknom the above,
the unitnx : X — Tesg),0)(X) is the mapx — ({x},0). Next, we need the homo-
morphic extensiony' : . Zy (X) — Zu(Y) of a given mapy:X — Z(Y), i.e., the
unique such homomorphism making the following diagram catem

X

nx g
‘
Tesr),0)(X) = Tesryo)(Y)

This is given by:
@"(P)) 7 ={v|ve ToNA Y U{vw|vxe Tp, we g(X) 7 }
(0'(P)z ={(WV) € Fp}U{(vWW) | vx€ Tp, (W,W) € g(X)}

As regards the constructors and deconstructors, we hazadgiigiven explicit
representations of them as functions over (finitaéfyprocesses. We have also al-
ready given homomorphic treatments of the unary decortstisidNe finally give
treatments of the binary deconstructors as unique sokitinaquations, along sim-
ilar lines to their treatment in the case.@f:. Observe that:

(Ha)x(Pr,...,Pn) =a1PLOx @Po Ox ... Ox @b
(Dg)x(PL <P =Q0DxaiPLOx @P0x ... Ox anPs

Using this, one finds thatx, Oy *® and 0%, the latter defined as in equa-
tion (9), are the unique functions which satisfy the evidenalogues of equa-
tions [8) together with, making another use of the form okexal choice made
available byQ:

N(X)OP=n(xx(QOP)

and
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(PL,....Py) 022 n(x) = (OF)x (Pr, ..., P) Mx N (X)
(Pe,...,Pn) 022020 1 (x) = (0F)x (PL,....Pa) Mx n(X)

As regards concurrency, we define
[Ix.y: Tesr|.0) (X) x Tesr|.0) (Y)— Tesr|.0) (XxY)
together with functions
|15 " Tesry,0) ()" % Tesry,e) (Y) = Tesr,e) (X xY)
||§<2,$1"'%3Tcsm,g) (X)"x Tesgy,0)(Y) = Tesrj,o) (X xY)

1%y Tesr),0)(Y) = Tesr,o) (X xY)

where thea; € A are all different, anc € X, by the analogues of equatioris](10)
above, together with:

nx)1Q =1"(Q

I (PM1Q) = PP (Q)
(0L, aR) =Q
QoL aR) =0

[ (n(y)) =n((xy))

(P,....,P) B2 nx) =Q
(Py,...,Py) [|33 n(x) = Q

Much as before, the equations have a unique solution, withi tomponent being

[Ix.v-
As regards interleaving, we define

v 1% v: Tesr.e) (X) % Tesri.a)(Y) = Tesrio) (X x Y)
by:
P! )Q:{e}u{w|ueTpﬁA*,veTQﬁA*,Weu|'v}u

Tt (XY
{w(x,y) | uxe Tp, vy To, weu|' vV (u=v=w=¢)}

P Il xy) Q= {(&W) | (8, W) € Fp} U
{(W,W) | (u,W) € Fp, (W) €Fg, weu| v}

PllkyQ  =QllkxP

One has that:
Plllxy Q=Plllky QO P|ll%y Q
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and that|||XY,|||XY are components of the unique solutions to the analogues of
equanns[Iﬂl) above, together with:

n(x) [I'Q =" (Q)

11" (PT1Q) =" (P11 [["™*(Q)
1™ (OaR) =0

1™ (Q@oLaR) = Q

11" (n(y) =nxy)

and corresponding equations fgf and|||"Y.

It would be interesting to check more completely which of tiseial laws, as
found in, e.g.,[[BHR84, Hoa8%, DeNB85], the CSP operatordhatl¢vel of free
CSHR], Q)-algebras obey. Note that some adjustments need to be made dary-
ing types. For exampld| is commutative, which here means that the following
equation holds:

Tesry.o) (W Y)(Pllxy Q =Qllvx P
wherey: X x Y — Y x X is the commutativity magx,y) — (y,X).

7.1 Termination

As remarked in the introduction, termination and sequemnane available in a stan-
dard way for terms of typenit. Syntactically, we regargkip as an abbreviation
for x andM;N as one forAx:unit.N)(M) wherex does not occur free iN; se-
mantically, we have a corresponding element of, and binpeyator over, the free
CSR(|, Q2)-algebra on the one-point set.

Let us use these ideas to treat CSP extended with terminatidrsequencing.
We work with the finitary{ v }-processes representation®fsg| o) ({v'})- Then,
following the above prescription, termination and sequmgare given by:

SKIP = {v'} P.Q=(xe{v}—~Q'(P)

For general reasons, termination and sequencing, so-defimen a monoid and
sequencing commutes with all constructors in its first argoimFor example we

have that:
|:|a RiQ) = |:|aP

Composition further commutes within its second argument.

The deconstructors are defined as above except that in theotdlse concur-
rency operators one has to adjus} .-} and||[;,} 1} S0 that they remain within
the world of the{ v }-processes; this can be done by postcomposing them with the
evident bijection betweefiv'} x {v}-processes anflv' }-processes, and all this
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restricts to the finitary processes. Alternatively one caeadly consider these ad-
justed operators as deconstructors over the (finitary)-processes.

The {v'}-processes are essentially the elements of the stableefilmodel
of [Ros98]. More precisely, one can define a bijection frons&e’'s model to our
{v'}-processes by setti®(T,F) = (T,F’) where

F'={(wW) A" x Z(A)| wWWU{v}) eF}
The inverse 0B sends’ to the set:

{wW), wWU{v})| (wW)eF}u
{(W,W) | Wy € TAW C AFU{(Wv, W) |wv € TAW € AU{v'}}

and is a homomorphism between all our operators, whethestreartors, decon-
structors, termination, or sequencing (suitably definedd, the corresponding ones
defined for Roscoe’s model.

8 Discussion

We have shown the possibility of a principled combinatiorC&P and functional
programming from the viewpoint of the algebraic theory déefs. The main miss-
ing ingredient is an algebraic treatment of binary decamestrrs, although we were
able to partially circumvent that by giving explicit defioibs of them. Also missing
are a logic for proving properties of these deconstrucargperational semantics,
and a treatment that includes recursion.

As regards a logic, it may prove possible to adapt the logamdas of [PPr08,
PPr09] to handle binary deconstructors; the main proofla would then be that
of computation inductionthat if a proposition holds for all ‘values’ (i.e., element
of a given seK) and if it holds for the applications of each constructornyg given
‘computations’ (i.e., elements @f(X)) for which it is assumed to hold, then it holds
for all computations. We do not anticipate any difficulty iivigg an operational
semantics for the above combination of the computatidredlculus and CSP and
proving an adequacy theorem.

To treat recursion algebraically, one passes from equaltibeories to inequa-
tional theories Th (inequations have the fdrmu, for termst, uin a given signature
2); inequational theories can include equations, regardimgquation as two evi-
dent inequations. There is a natural inequational logicd&dtucing consequences
of the axioms: one simply drops symmetry from the logic fouatipns [BIo76].
ThenX-algebras and Th-algebras are taken in the categosy-gfios and continu-
ous functions, a free algebra monad always exists, justthgioase of sets, and the
logic is complete for the class of such algebras. One ingaddivergence constant
Q in the signature and the axiom

Q<x
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so that Th-algebras always have a least element. Recuefivitions are then mod-
elled by least fixed-points in the usual way. See [HRPPO6, ®}l&fy some further
explanations.

The three classical powerdomains: convex (aka Plotkimeidaka Hoare) and
upper (aka Smyth) provide a useful illustration of theseasglfGHKO3,[ HPPQO6].
One takes as signature a binary operation symbtd retain notational consistency
with the present paper (a more neutral symbol, such, &normally used instead),
and the constar®; one takes the theory to be thatis a semilattice (meaning, as
before, that associativity, commutativity and idempotehold) and that, as given
above,Q is the least element with respect to the ordering his gives an algebraic
account of the convex powerdomain.

If one adds tha@ is the zero of the semilattice (which is equivalent, in thesgnt
context, to the inequatior < xMy) one obtains instead an algebraic account of
the lower powerdomain. One then further has the notatipeallinterintuitive facts
thatx <y is equivalent toy C x, with C defined as in Sectidn 3, and thaty is
the supremum ox andy with respect to<; in models,< typically corresponds to
subset. It would be more natural in this case to use the ddel¢toC and to writeL
instead of 1, when we would be dealing with a join-semilattice with a tedlement
whose order coincides witHd.

If one adds instead thaty < x, one obtains an algebraic account of the upper
powerdomain. One now has thaf y is equivalent in this context toC y, thatxmy
is the greatest lower bound findy, and thak Q = Q (but this latter fact is not
equivalent in inequational logic tamy < x); in models,< typically corresponds to
superset. The notationsandC are therefore more intuitive in the upper case, and
there one has a meet-semilattice with a least element witdee aincides with<.

It will be clear from these considerations that the stabileifas model fits into
the pattern of the lower powerdomain and that the failuresfdences model fits
into the pattern of the upper powerdomain. In the case oftéitgesfailures model
it is natural, in the light of the above considerations, tketdh to be CSH, Q)
together with the axionf2 < x. The X-processes with countably many traces pre-
sumably form the free algebra ov¥r considered as a discrei@cpo; one should
also characterise more general cases than diserefsos.

One should also investigate whether a fragment of the &sldivergences model
forms the initial model of an appropriate theory, and looktet free models of
such a theory. The theory might well be found by analogy with work on the
stable failures model, substitutiig {12) forl13) and, pg@d) using the mixed-choice
constructor, defined below, to overcome any difficultie$wtliie deconstructors. One
would expect the initial model to contain only finitely-geakle processes, meaning
those which, at any trace, either branch finitely or diveya(see the discussion
in [Ros98]).

Our initial division of our selection of CSP operators intinstructors and de-
constructors was natural, although it turned out that a sdraedifferent division,
with ‘restricted’ constructors, resulted in what seemethdoa better analysis (we
were not able to rule out the possibility that there are afiéve, indirect, defini-
tions of the deconstructors with the original choice of ¢argors). One of these
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restricted constructors was a deterministic choice operagking use of the di-
vergence constar®. There should surely, however, also be a development withou
divergence that allows the interpretation of the combaratf CSP and functional
programming.

We were, however, not able to do this using C$Pthe free algebra does not
seem to support a suitable definition of concealment, wiheteéned directly or
via a homomorphism. For example a straightforward extensiohe homomorphic
treatment of concealment in the case of the initial algetfteSectior b) would give

(axOb.Stop)\a=xM(xOb.Stop)

However, our approach requires the right-hand side to bivalgut to a term built
from constructors only, but no natural candidates camedaifw-all choices that
came to mind lead to unwanted identifications.

We conjecture that, taking instead, as constructorpad-choiceperator of the

form:
D ai . X
i

where eacln; is either an action or, would lead to a satisfactory theory. This new
operator is given by the equation:

|;|Gi.xi =[x [Jxo[]ax

ai=1 ai=t a£T

and there is a homomorphic relationship with concealment:

(D aix)\a=[](ai\a).(x\a)

(with the evident understanding af\a). Note that in the stable failures model we
have the equation:

|;|ai.xi: [Nxn{eo[]ax

ai=T oi#T

which is presumably why the deterministic choice operatailable in the presence
of Q played so central a rdle there.

In a different direction, one might also ask if there is som@bem if we alterna-
tively take an extended set of operators as constructorexXample, why not add
relabelling with its equations to the axioms? As the axionmiictively determine
relabelling on the finitary refusal sets model, that woulilll Is¢ the initial algebra,
and the same holds if we add any of the other operators we h&ee tis decon-
structors.
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However, theX-refusal sets would not longer be the free algebra, as theuédw
be extra elements, such &) for x € X, wheref is a relabelling function. We
would also get some undesired equations holding betweerstef the computa-
tional A-calculus. For any-ary constructor op and evaluation cont&t-], one
has in the monadic semantics:

E[op(M1,...,Mp)] =op(E[M1],...,E[Mn])

So one would hav&[f(M)] = f(E[M]) if one took relabelling as a constructor,
and, as another example, one would hey®l || N] = E[M] || E[N] if one took the
concurrency operator as a constructor.

It will be clear to the reader that, in principle, one can stigate other process
calculi and their combination with functional programming similar way. For ex-
ample for Milner’'s CCS[[Mil80] one could take action prefixifwnames, conames
andT) together withNIL and the sum operator as constructors, and as axioms that
we have a semilattice with a zero, for strong bisimulatiogether with the usual
T-laws, if we additionally wish to consider weak bisimulatiorhe deconstructors
would be renaming, hiding, and parallel, and all should Futable polymorphic
versions in the functional programming context. Other pesccalculi such as the
mt-calculus [SWO0B, Sta08], or even the stochasticalculus [Pri95, KS08], might
be dealt with similarly. In much the same way, one could coralgarallelism with
a global store with functional programming, following thgebraic account of the
resumptions monad _[HPP06, ARP09] where the constructorsharéwo standard
ones for global storé [PPD2], a nondeterministic choiceatpen, and a unary ‘sus-
pension’ operation.

A well-known feature of the monadic approach [HPPO06] is that often pos-
sible to combine different effects in a modular way. For eglamthe global side-
effects monad i$Sx —)SwhereSis a suitable set of states. A common combination
of it with another monad is the monad (Sx —)S. So, takingT = Tcsr)), for ex-
ample, we get a combination of CSP with global side-effects.

As another example, given a monditi, one has thévl-action monadM x —
which supports a unamy-action effect constructan.—, parameterised by elements
m of the monoid. One might use this monad to model the passagmef taking
M to be, for example, the monoid of the natural numbers IN uadeéition. A suit-
able combination of this monad with ones for CSP may vyielghtutlanalyses of
timed CSP[[RR99, OS06], wittWait n — given by the IN-action effect constructor.
We therefore have a very rich space of possible combinatibmsocess calculi,
functional programming and other effects, and we hope thiatesof these prove
useful.

Finally, we note that there is no general account of how theatgns used in
the algebraic theory of effects arise. In such cases as Ightde, nondetermin-
ism or probability, there are natural axioms and monadsdjravailable, and it is
encouraging that the two are equivaleént [PRP02, HPP06]. ©uklénvestigate us-
ing operational methods and behavioural equivalencestermane the equations,
and it would be interesting to do so. Another approach is e af ‘test alge-
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bras’ [SS06| KPQ9]. In the case of process calculi one niiyunaes operational
methods; however the resulting axioms may not be very modotavery natural
mathematically, and, all in all, in this respect the sitoatis not satisfactory.
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Appendix: The computational A-calculus

In this appendix, we sketch (a slight variant of) the syntack semantics of Moggi's
computational -calculus, orAc-calculus[Mog88, Mog91]. It has types given by:

O:=b |unit |OXx O |empty |C— O

whereb ranges over a given set of base types, e, the type constructio o
may be defined to benit — g. The terms of thé.-calculus are given by:

M:=x|g(M)|*|inM | (M,M) | £stM | sndM | AXx:0.M | MM

whereg ranges over given unary function symbols of given types: 1, such as
O:unit — nat oOr succ :nat — nat, if we want the natural numbers, or op:
T(o)x...xT(0o)— T(o) for some operation symbol from a theory for whittis
the free algebra monad. There are standard notions of fatb@md variables and
of closed terms and substitution; there are also standpndgyules for judgements
I+ M: o, that the termM has typeo in the context” (contexts have the form
' =Xq1:01,...,% : Op), including:

[=M:empty
[FinM:o

A Ac-model (on the category of sets—Moggi worked more genératinsists of
a monadr, together with enough information to interpret basic tyaed the given
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function symbols. So there is a given 4] to interpret each basic tygg and
then every typ@ receives an interpretation as a pef]; for example[empty] = 0.
There is also given a mafo]] — T([[t]) to interpret every given unary function
symbolg: o — 1. Aterm I - M: o of type o in contextl" is modelled by a map

[M]:[F] — T[o] (where[xy:01,...,%::0n]) = [01] X ... X [[on])). For example,
if I = inM: 0o then[[inM] = Oj)o[M]] (where, for any seX, Ox is the unique map
from 0 to X).

We define values and evaluation contexts. Values can be thafigs (syntax
for) completed computations, and are defined by:

Vi=x|*|(V,V)]|inV | Ax:0.M
together with clauses such as:
V :=0] succ (V)

depending on the choice of basic types and given functiorbsygn\We may then
define evaluation contexts by:

E:=[-]|inE|(E,M) | (V,E) |EM|VE|fst(E)|snd(E)
together with clauses such as:
E ::=succ(E)

depending on the choice of basic types and given functiorbsysn\We writeE [M]
for the term obtained by replacing the ‘hole’] in an evaluation ternk by a term
M. The computational thought behind evaluation contextsasih a program of the
form E[M], the first computational step arises witthih
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