Skip to main content

Multi-microphone Speech Dereverberation Using Eigen-decomposition

  • Chapter
Speech Dereverberation

Part of the book series: Signals and Commmunication Technology ((SCT))

Abstract

A family of approaches for multi-microphone speech dereverberation in colored noise environments, using eigen-decomposition of the data correlation matrix, is explored in this chapter. It is shown that the Acoustic Impulse Responses (AIRs), relating the speech source and the microphones are embedded in the null subspace of the received signals. The null subspace is estimated using either the generalized singular value decomposition of the data matrix or the generalized eigen-value decomposition of the respective correlation matrix.

In cases where the channel order is overestimated, further processing is required. A closed-form algorithm for extracting the AIR is derived. The proposed algorithm exploits the special structure of the null subspace matrix by using the total least squares criterion.

A study of the incorporation of the subspace method into a subband framework has potential to improve the performance of the proposed method, although many problems, especially the gain ambiguity problem, remain open.

The estimated AIRs can be used for dereverberation by applying conventional channel inversion methods.

An experimental study supports the potential of the proposed method, and provides insight into its limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affès, S., Grenier, Y.: A signal subspace tracking algorithm for microphone array processing of speech. IEEE Trans. Speech Audio Process. 5(5), 425–437 (1997)

    Article  Google Scholar 

  2. Ahmad, R., Gaubitch, N.D., Naylor, P.A.: A noise-robust dual filter approach to multichannel blind system identification. In: Proc. European Signal Processing Conf. (EUSIPCO). Poznan, Poland (2007)

    Google Scholar 

  3. Ahmad, R., Khong, A.W.H., Naylor, P.A.: A practical adaptive blind multichannel estimation algorithm with application to acoustic impulse responses. In: Proc. IEEE Int. Conf. Digital Signal Processing (DSP), pp. 31–34 (2007)

    Google Scholar 

  4. Allen, J.B., Berkley, D.A.: Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 65(4), 943–950 (1979)

    Article  Google Scholar 

  5. Doclo, S., Moonen, M.: Combined frequency-domain dereverberation and noise reduction technique for multi-microphone speech enhancement. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC), pp. 31–34. Darmstadt, Germany (2001)

    Google Scholar 

  6. Eneman, K., Moonen, M.: DFT modulated filter bank design for oversampled subband systems. Signal Processing 81(9), 1947–1973 (2001)

    Article  MATH  Google Scholar 

  7. Eneman, K., Moonen, M.: Ambiguity elimination in frequency-domain subspace identification. Internal Report 06-151, K. U. Leuven, Leuven, Belgium (2006)

    Google Scholar 

  8. Eneman, K., Moonen, M.: Multimicrophone speech dereverberation: Experimental validation. EURASIP J. Audio, Speech, Music Process. 2007, Article ID 51831 (2007)

    Google Scholar 

  9. Gannot, S., Moonen, M.: Subspace methods for multi-microphone speech dereverberation. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC). Darmstadt, Germany (2001)

    Google Scholar 

  10. Gannot, S., Moonen, M.: Speech dereverberation via subspace methods incorporating subband structure. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC). Kyoto, Japan (2003)

    Google Scholar 

  11. Gannot, S., Moonen, M.: Subspace methods for multimicrophone speech dereverberation. EURASIP J. on App. Signal Process. 2003(1), 1074–1090 (2003). DOI http://dx.doi.org/10.1155/S1110865703305049

    Article  MATH  Google Scholar 

  12. Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S., Dahlgren, N.L., Zue, V.: Acoustic-phonetic continuous speech corpus (TIMIT). CD-ROM (1991)

    Google Scholar 

  13. Gaubitch, N.D., Thomas, M.R.P., Naylor, P.A.: Subband method for multichannel least squares equalization of room transfer functions. In: Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 21–24. New Paltz, NY, USA (2007)

    Google Scholar 

  14. Golub, G.H., van Loan, C.F.: Matrix computations, 3 edn. John Hopkins Series in the Mathematical Sciences. John Hopkins University Press (1996)

    Google Scholar 

  15. Gürelli, M.I., Nikias, C.L.: EVAM: An eigenvector-based algorithm for multichannel blind deconvolution of input colored signals. IEEE Trans. Signal Process. 43(1), 134–149 (1995)

    Article  Google Scholar 

  16. Habets, E.A.P.: Room impulse response (RIR) generator. Online (2006). URL http:// home.tiscali.nl/ehabets/rir_generator.html

    Google Scholar 

  17. Hasan, M.K., Benesty, J., Naylor, P.A., Ward, D.B.: Improving robustness of blind adaptive multichannel identification algorithms using constraints. In: Proc. European Signal Processing Conf. (EUSIPCO). Antalya, Turkey (2005)

    Google Scholar 

  18. Hasan, M.K., Naylor, P.A.: Analyzing effect of noise on blind adaptive multichannel identification algorithms: Robustness issue. In: Proc. European Signal Processing Conf. (EUSIPCO). Florence, Italy (2006)

    Google Scholar 

  19. Haykin, S. (ed.): Blind deconvolution, 4th edn. Prentice Hall (1994)

    Google Scholar 

  20. Hikichi, T., Delcroix, M., Miyoshi, M.: Blind dereverberation based on estimates of signal transmission channels without precise information on channel order. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 1069–1072. Philadelphia, USA (2005)

    Google Scholar 

  21. Hikichi, T., Delcroix, M., Miyoshi, M.: Speech dereverberation algorithm using transfer function estimates with overestimated order. Acoustical Science and Technology 27(1), 28–35 (2006)

    Article  Google Scholar 

  22. Huang, Y., Benesty, J.: A class of frequency-domain adaptive approaches to blind multichannel identification. IEEE Trans. Signal Process. 51(1), 11–24 (2003)

    Article  MathSciNet  Google Scholar 

  23. Huang, Y., Benesty, J., Chen, J.: A blind channel identification-based two-stage approach to separation and dereverberation of speech signals in a reverberant environment. IEEE Trans. Speech Audio Process. 13(5), 882–895 (2005)

    Article  Google Scholar 

  24. Huffel, S.V., Park, H., Rosen, J.B.: Formulation and solution of structured total least norm problems for parameter estimation. IEEE Trans. Signal Process. 44(10), 2464–2474 (1996)

    Article  Google Scholar 

  25. Hughes, C.P., Nikeghbali, A.: The zeros of random polynomials cluster uniformly near the unit circle. Online (2007). URL http://arxiv.org/abs/math.CV/0406376. Ver. 3

    Google Scholar 

  26. Jan, E.E., Flanagan, J.: Sound capture from spatial volumes: Matched-filter processing of microphone arrays having randomly-distributed sensors. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 917–920. Atlanta, Georgia, USA (1996)

    Google Scholar 

  27. Javidi, S., Gaubitch, N.D., Naylor, P.A.: An experimental study of the eigendecomposition methods for blind SIMO system identification in the presence of noise. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC). Paris, France (2006)

    Google Scholar 

  28. Knapp, C.H., Carter, G.C.: The generalized correlation method for estimation of time delay. IEEE Trans. Acoust., Speech, Signal Process. 24(4), 320–327 (1976)

    Article  Google Scholar 

  29. Lin, X., Gaubitch, N.D., Naylor, P.A.: Two-stage blind identification of SIMO systems with common zeros. In: Proc. European Signal Processing Conf. (EUSIPCO). Florence, Italy (2006)

    Google Scholar 

  30. Lin, X., Gaubitch, N.D., Naylor, P.A.: Blind speech dereverberation in the presence of common acoustical zeros. In: Proc. European Signal Processing Conf. (EUSIPCO), pp. 389–393. Pozna´n, Poland (2007)

    Google Scholar 

  31. Liu, Q.G., Champagne, B., Kabal, P.: A microphone array processing technique for speech enhancement in a reverberant space. Speech Communication 18(4), 317–334 (1996)

    Article  Google Scholar 

  32. Miyoshi, M., Kaneda, Y.: Inverse filtering of room acoustics. IEEE Trans. Acoust., Speech, Signal Process. 36(2), 145–152 (1988)

    Article  Google Scholar 

  33. Morgan, D.R., Benesty, J., Sondhi, M.M.: On the evaluation of estimated impulse responses. IEEE Signal Process. Lett. 5(7), 174–176 (1998). DOI 10.1109/97.700920

    Article  Google Scholar 

  34. Moulines, E., Duhamel, P., Cardoso, J.F., Mayrargue, S.: Subspace methods for the blind identification of multichannel FIR filters. IEEE Trans. Signal Process. 43(2), 516–525 (1995)

    Article  Google Scholar 

  35. Neely, S.T., Allen, J.B.: Invertibility of a room impulse response. J. Acoust. Soc. Am. 66(1), 165–169 (1979)

    Article  Google Scholar 

  36. Polack, J.D.: La transmission de l’énergie sonore dans les salles. Thèse de doctorat d’etat, Université du Maine, La Mans (1988)

    Google Scholar 

  37. Radlovi´c, B.D., Williamson, R., Kennedy, R.: Equalization in an acoustic reverberant environment: robustness results. IEEE Trans. Speech Audio Process. 8(3), 311–319 (2000)

    Article  Google Scholar 

  38. Rahbar, K., Reilly, J.P., Manton, J.H.: A frequency domain approach to blind identification of MIMO FIR systems driven by quasi-stationary signals. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp. 1717–1720. Orlando, Florida, USA (2002)

    Google Scholar 

  39. Spriet, A., Moonen, M., Wouters, J.: A multichannel subband GSVD based approach for speech enhancement in hearing aids. In: Proc. Int. Workshop Acoust. Echo Noise Control (IWAENC). Darmstadt, Germany (2001)

    Google Scholar 

  40. Tong, L., Perreau, S.: Multichannel blind identification: From subspace to maximum likelihood methods. Proc. IEEE 86(10), 1951–1968 (1998)

    Article  Google Scholar 

  41. Weiß, S., Rice, G.W., Stewart, R.W.: Multichannel equalization in subbands. In: Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. New Paltz, NY, USA (1999)

    Google Scholar 

  42. Weiß, S., Stewart, R.W., Stenger, A., Rabenstein, R.: Performance limitations of subband adaptive filters. In: Proc. European Signal Processing Conf. (EUSIPCO), pp. 1245–1248. Rhodos, Greece (1998)

    Google Scholar 

  43. Xu, G., Liu, H., Tong, L., Kailath, T.: A least-squares approach to blind channel identification. IEEE Trans. Signal Process. 43(12), 2982–2993 (1995)

    Article  Google Scholar 

  44. Yamada, K., Wang, J., Itakura, F.: Recovering of broad band reverberant speech signal by subband MINT method. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), vol. 2, pp. 969–972. Toronto, Canada (1991)

    Google Scholar 

  45. Yang, B.: Projection approximation subspace tracking. IEEE Trans. Signal Process. 43(1), 95–107 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gannot, S. (2010). Multi-microphone Speech Dereverberation Using Eigen-decomposition. In: Naylor, P., Gaubitch, N. (eds) Speech Dereverberation. Signals and Commmunication Technology. Springer, London. https://doi.org/10.1007/978-1-84996-056-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-056-4_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-055-7

  • Online ISBN: 978-1-84996-056-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics