Skip to main content

Harvesting Intelligence in Multimedia Social Tagging Systems

  • Chapter
  • First Online:
Emergent Web Intelligence: Advanced Information Retrieval

Abstract

As more people adopt tagging practices, social tagging systems tend to form rich knowledge repositories that enable the extraction of patterns reflecting the way content semantics is perceived by the web users. This is of particular importance, especially in the case of multimedia content, since the availability of such content in the web is very high and its efficient retrieval using textual annotations or content-based automatically extracted metadata still remains a challenge. It is argued that complementing multimedia analysis techniques with knowledge drawn from web social annotations may facilitate multimedia content management. This chapter focuses on analyzing tagging patterns and combining them with content feature extraction methods, generating, thus, intelligence from multimedia social tagging systems. Emphasis is placed on using all available “tracks” of knowledge, that is tag co-occurrence together with semantic relations among tags and low-level features of the content. Towards this direction, a survey on the theoretical background and the adopted practices for analysis of multimedia social content are presented. A case study from Flickr illustrates the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Flickr photo-sharing system: http://www.flickr.com del.icio.us

  2. 2.

    Del.icio.us social bookmarks manager: http://del.icio.us

  3. 3.

    YouTube video-sharing website: http://www.youtube.com

  4. 4.

    Technorati blog search engine: http://technorati.com

  5. 5.

    wget: http://www.gnu.org/software/wget

References

  1. O’Reilly T. (2005) What is Web 2.0, In http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

  2. Cattuto C, Loreto V, Petronero L. (2007) Semiotic dynamics and collaborative tagging. In Procceedings of the National Academy of Sciences, 104:14611464

    Google Scholar 

  3. Halpin H, Shepard H. (1990) Evolving ontologies from folksonomies: Tagging as a complex system. In Complex Systems Summer School Project, http://www.ibiblio.org/hhalpin/homepage/notes/taggingcss.html.

  4. Steels L. (2006) Semiotic dynamics for embodied agents. IEEE Intelligent Systems, 21:3238

    Google Scholar 

  5. Smeulders A W M, Worring M, Santini S, Gupta A, Jain R. (2000) Content-Based Image Retrieval at the End of the Early Years, In IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, number 12, pp. 1349–1380

    Article  Google Scholar 

  6. National Information Standards Organization, (2004) Understanding Metadata. NISO Press, pp. 1-20

    Google Scholar 

  7. Wilensky R. (2000) Digital Library Resources as a Basis for Collaborative Work. Journal of The American Society for Information Science and Technology, 51(3):228245

    Google Scholar 

  8. Hobson P, Kompatsiaris Y. (2006) Advances in semantic multimedia analysis for personalised content access. Special Session on Advances in Semantic Multimedia Analysis for Personalised Content Access, IEEE International Symposium on Circuits and Systems

    Google Scholar 

  9. Golder S, Huberman A. (2006) The Structure of Collaborative Tagging Systems. Journal of Information Science

    Google Scholar 

  10. Begelman G, Keller Ph, Smadja F. (2006) Automated Tag Clustering: Improving search and exploration in the tag space. In Procceedings of Collaborative Web Tagging Workshop at the 15th WWW Conference, Edinburgh, Scotland

    Google Scholar 

  11. Grahl M, Hotho A, Stumme G. (2007) Conceptual Clustering of Social Bookmarking Sites. 7th International Conference on Knowledge Management, 356–364, KnowCenter,Graz, Austria.

    Google Scholar 

  12. Jaschke R, Hotho A, Schmitz Ch, Ganter B, Stumme G. (2006). TRIAS - An Algorithm for Mining Iceberg Tri-Lattices. In Proceedings of the 6th IEEE International Conference on Data Mining, 907–911

    Google Scholar 

  13. Gruber T. (2005) Folksonomy of Ontology: A Mash-up of Apples and Oranges. First On-Line conference on Metadata and Semantics Research MTSR

    Google Scholar 

  14. Knerr T. (2006) Tagging Ontology- Towards a Common Ontology for Folksonomies. Available at: http://code.google.com/p/tagont/

  15. Newman R. (2005) Tag ontology design. Available at: http://www.holygoat.co.uk/projects/tags/

  16. Brickley D, Miles A, (2005) SKOS Core Vocabulary Specification,W3CWorking Draft2. Available at: http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102

  17. Schmitz P. (2006) Inducing Ontology from Flickr Tags. In Proceedings of the Collaborative Web Tagging Workshop at the 15th WWW Conference, Edinburgh, Scotland

    Google Scholar 

  18. Mika P. (2005) Ontologies are Us: A Unified Model of Social Networks and Semantics. In Proceedings of the 4th International Semantic Web Conference

    Google Scholar 

  19. Schmitz C, Hotho A, Jaschke R, Stumme G. (2006) Mining Association Rules in Folksonomies. In Proceedings of the (IFCS 2006), pages 261–270, Ljubljana

    Google Scholar 

  20. Specia L, Motta E. (2007) Integrating Folksonomies with the Semantic Web. In Proceedings of the 4th European Semantic Web Conference

    Google Scholar 

  21. Wu X, Zhang L, Yu Y. (2006) Exploring Social Annotations for the Semantic Web. In Proceedings of the 15th WWW Conference (WWW 2006), Edinnburgh, Scotland

    Google Scholar 

  22. Zhou M, Bao S, Wu X, Yu Y. (2007) An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations. In Proceedings of the 6th International Semantic Web Conference

    Google Scholar 

  23. Michael S. Lew and Nicu Sebe and Chabane Djeraba Lifl and Ramesh Jain (2006) Content-based Multimedia Information Retrieval: State of the Art and Challenges, ACM Transactions on Multimedia Computing, Communications, and Applications, 2(1): 1–19

    Article  Google Scholar 

  24. Pereira F. and Koenen R. (2001) MPEG-7: A standard for multimedia content description, Int. J. Image Graph, 1, 3, 527546

    Article  Google Scholar 

  25. Lew M.S. (2001) Principles of Visual Information Retrieval, Springer, London, UK

    Book  MATH  Google Scholar 

  26. Gevers T. (2001) Color-based retrieval. In Principles of Visual Information Retrieval, M. S. Lew, Ed. Springer-Verlag, London, UK, 1149

    Google Scholar 

  27. Ojala T., Pietikainen M. and Hardwood D. (1996) Comparative study of texture measures with classification based on feature distributionsm, Patt. Recogn. 29, 1, 5159

    Article  Google Scholar 

  28. Jafari-Khouzani K. and Soltanian-Zadeh H. (2005) Radon transform orientation estimation for rotation invariant texture analysis, IEEE Trans. Patt. Analy. Machine Intell. 27, 6, 10041008

    MathSciNet  Google Scholar 

  29. Bartolini I., Ciaccia P. and Patella M. (2005) WARP: Accurate retrieval of shapes using phase of fourier descriptors and time warping distance, IEEE Trans. Patt. Analy. Machine Intellig. 27, 1, 142147

    Google Scholar 

  30. Srivastava A., Joshi S.H., Mio W. and Liu X. (2005) Statistical shape analysis: Clustering, learning, and testing, IEEE Trans. Patt. Analy. Mach. Intell. 27, 4, 590602

    Article  Google Scholar 

  31. Sebastian T.B., Klein P.N. and Kimia B.B. (2004) Recognition of shapes by editing their shock graphs, IEEE Trans. Patt. Analy. Machine Intell. 26, 5, 550571

    Google Scholar 

  32. Vretos N., Solachidis V. and Pitas I. (2005) An MPEG-7 Based Description Scheme for Video Analysis Using Anthropocentric Video Content Descriptors, LECTURE NOTES IN COMPUTER SCIENCE, 3746, 725, Springer

    Google Scholar 

  33. Sebe N., Lew M.S. and Huijsmans D.P. (2000) Toward improved ranking metrics, IEEE Trans. Patt. Analy. Mach. Intell. 22, 10, 11321143

    Article  Google Scholar 

  34. Jacobs D.W., Weinshall D. and Gdalyahu Y. (2000) Classification with nonmetric distances: Image hetrieval and class representation, IEEE Trans. Patt. Analy. Machine Intell. 22, 6, 583600

    Google Scholar 

  35. Beretti S., Del Bimbo A. and Vicario E. (2001) Efficient matching and indexing of graph models in content-based retrieval, IEEE Trans. Patt. Analy. Machine Intellig. 23, 10, 10891105

    Google Scholar 

  36. Cooper M., Foote J., Girgensohn A. and Wilcox L. (2005) Temporal event clustering for digital photo collections, ACMTrans. Multimedia Comput. Comm. Applica. 1, 3, 269288

    Google Scholar 

  37. Lindeberg T. (1998) Feature detection with automatic scale selection, Int. J. Comput. Vision, 30, 2, 79116

    Google Scholar 

  38. Lowe D. (2004) Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision 60, 2, 91110

    Article  Google Scholar 

  39. Smeaton A. F., Over P. and Kraaij W. (2006) ”Evaluation campaigns and TRECVid”, In Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval (Santa Barbara, California, USA, October 26 - 27, 2006), MIR ’06, ACM Press, New York, NY, 321–330

    Google Scholar 

  40. Maillot N., Thonnat M. and Boucher A. (2004) Towards ontology-based cognitive vision, Mach. Vis. Appl., 16, 1, 33–40

    Article  Google Scholar 

  41. Hunter J., Drennan J. and Little S. (2004) Realizing the Hydrogen Economy through Semantic Web Technologies, IEEE Intelligent Systems, 19, 1, Jan.-Feb., 40–47

    Google Scholar 

  42. Dasiopoulou S., Heinecke J., Saathoff C. and Strintzis M.G. (2007) Multimedia Reasoning with Natural Language Support, 1st IEEE International Conference on Semantic Computing (ICSC), Irvine, CA, USA

    Google Scholar 

  43. Aurnhammer M, Hanappe P, Steels L. (2006) Augmenting navigation for collaborative tagging with emergent semantics. In Proceedings of the 5th International Semantic Web Conference

    Google Scholar 

  44. Alvarado P, Doerfler P, Wickel J. (2001) Axon2 a visual object recognition system for non-rigid objects. In Proceedings of the International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA)

    Google Scholar 

  45. Giannakidou E, Kompatsiaris I, Vakali A. (2008) SEMSOC: Semantics Mining on Multimedia Social Data Sources. In Proceedings of the 2nd IEEE International Conference on Semantic Computing, Santa Clara, CA, USA

    Google Scholar 

  46. Ghosh H,. Poornachander P, Mallik A, Chaudhury S. (2007) Learning ontology for personalized video retrieval. In International Multimedia Conference, Workshop on multimedia information retrieval on The many faces of multimedia semantics, Augsburg, Bavaria, Germany

    Google Scholar 

  47. Kennedy L, Naaman M, Ahern S, Nair R, Rattenbury T. (2007) How flickr helps us make sense of the world: context and content in community-contributed media collections. In In Proceedings of the 15th international Conference on Multimedia, Augsburg, Germany

    Google Scholar 

  48. Quack T, Leibe B, Van Gool L. (2008) World-scale mining of objects and events from community photo collections. In Proceedings of the 2008 international Conference on Content-Based Image and Video Retrieval, Niagara Falls, Canada

    Google Scholar 

  49. Crandall D, Backstrom L, Huttenlocher D, Kleinberg J. (2009) Mapping the World’s Photos. In Proceedings of the World Wide Web Conference, Madrid, Spain

    Google Scholar 

  50. Kennedy L, Naaman M. (2009) Less Talk, More Rock: Automated Organization of Community-Contributed Collections of Concert Videos. In Proceedings of the World Wide Web Conference, Madrid, Spain

    Google Scholar 

  51. Olivares X, Ciaramita M, van Zwol R. (2008) Boosting image retrieval through aggregating search results based on visual annotations. In Proceeding of the 16th ACM international conference on Multimedia, Vancouver, British Columbia, Canada

    Google Scholar 

  52. Lindstaedt S, Pammer V, Morzinger R, Kern R, Mulllner H, Wagner C. (2008) Recommending tags for pictures based on text, visual content and user context. In Proceedings of the Third International Conference on Internet and Web Applications and Services, Athens, Greece

    Google Scholar 

  53. Sigurbjornsson B, van Zwol R. (2008) Flickr tag recommendation based on collective knowledge. In Proceeding of the 17th international conference on World Wide Web, Beijing, China

    Google Scholar 

  54. Bumgardner J. (2006) Experimental colr pickr. Available at: http://www.krazydad.com/colrpickr/

  55. Langreiter C. (2006) Retrievr. Available at: http://labs.systemone.at/retrie-vr/

  56. Maguitman A, Lord P.W, Menczer F, Roinestad H, Vespignani A. (2005) Algorithmic Detection of Semantic Similarity. In Proccedings of the 14th international conference on World Wide Web, (WWW’05), pages 107–116

    Google Scholar 

  57. Wu Z, Palmer M. (1994) Verm semantics and lexical selection. In Proceedings of the 32nd annual meeting of the association for computational linguistics, pages = 133–138. New Mexiko, USA.

    Chapter  Google Scholar 

  58. Martnez J.M, “Overview of the MPEG-7 Standard (v4.0)”, ISO/MPEG N3752

    Google Scholar 

  59. B. S. Manjunath, Philippe Salembier, Thomas Sikora (2002) Introduction to MPEG-7: Multimedia Content Description Interface, John Wiley & Sons, Inc. New York

    Google Scholar 

  60. MPEG-7 Visual Experimentation Model (XM), Version 10.0, ISO/IEC/JTC1/SC29/WG11, Doc. N4062, Mar., 2001.

    Google Scholar 

  61. Fellbaum C. (1990) WordNet, an electronic lexical database. The MIT Press

    Google Scholar 

  62. Larsen B. and Aone C. (1999) Fast and effective: Text mining using linear-time document clustering, Proc. of 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, (KDD99), pages 1622, August

    Google Scholar 

  63. Xu R. (2005) Survey of Clustering Algorithms. In IEEE Transactions on Neural Networks, Vol. 16, No. 3, May

    Google Scholar 

  64. Chatzilari E, Nikolopoulos S, Giannakidou E, Vakali A, Kompatsiaris I. (2009) Leveraging Social Media For Training Object Detectors. In Proceedings of the 16th International Conference on Digital Signal Processing, Special Session on Social Media, Santorini, Greece

    Google Scholar 

  65. Buturovic Adis (2005) MPEG 7 Color Structure Descriptor for visual information retrieval project VizIR1. Institute for Software Technology and Interactive Systems, Technical University Vienna

    Google Scholar 

  66. B. S. Manjunath, Jens-Rainer Ohm, Vinod V. Vasudevan, and Akio Yamada (2001) Color and Texture Descriptors, IEEE Trans. On Circuits and Systemsfor Video Technology, vol. 11, No. 6

    Google Scholar 

Download references

Acknowledgements

The work presented in this paper was partially supported by the European Commission under contracts FP7-215453 WeKnowIt and FP6-26978 X-media.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eirini Giannakidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Giannakidou, E., Kaklidou, F., Chatzilari, E., Kompatsiaris, I., Vakali, A. (2010). Harvesting Intelligence in Multimedia Social Tagging Systems. In: Chbeir, R., Badr, Y., Abraham, A., Hassanien, AE. (eds) Emergent Web Intelligence: Advanced Information Retrieval. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/978-1-84996-074-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-074-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-073-1

  • Online ISBN: 978-1-84996-074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics