Abstract
Associative memories (AMs) were proposed as tools usually used in the restoration and classification of distorted patterns. Many interesting models have emerged in the last years with this aim. In this chapter a novel associative memory model (Geometric Associative Memory, GAM) based on Conformal Geometric Algebra (CGA) principles is described. At a low level, CGA provides a new coordinate-free framework for numeric processing in problem solving. The proposed model makes use of CGA and quadratic programming to store associations among patterns and their respective class. To classify an unknown pattern, an inner product is applied between it and the obtained GAM. Numerical and real examples to test the proposal are given. Formal conditions are also provided that assure the correct functioning of the proposal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, J.: A simple neural network generating an interactive memory. Math. Biosci. 14, 197–220 (1972)
Arena, P., Baglio, S., Fortuna, L., Xibilia, M.: Chaotic time series prediction via quaternionic multilayer perceptrons. Syst., Man and Cybern., Intell. Syst. for the 21st Century, IEEE Int. Conf., vol. 2, pp. 1790–1794 (1995)
Asuncion, A., Newman, D.: UCI machine learning repository (2007). http://www.ics.uci.edu/mlearn/MLRepository.html
Banarer, V., Perwass, C., Sommer, G.: The hypersphere neuron. 11th Eur. Symp. on Artif. Neural Netw. Evere, Belgium: d-side publ., pp. 469–474 (2003)
Barron, R.: Memorias asociativas y redes neuronales morfologicas para la recuperacion de patrones. Ph.D, thesis, Mexico, DF: National Institute Politechnic—Center of Computing Research (2006)
Barron, R., Cruz, B., Sossa, H., Laguna, G.: Conformal geometric algebra for spherical convex hull optimization. In: Proc. 3rd Internat. Conf. on Appl. of Geom. Algebras in Comput. Sci. and Eng., AGACSE 2008 (2008)
Bayro, E., Vallejo, R.: Geometric feedforward neural networks and support vector machines. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra with Applications in Science and Engineering, pp. 309–325. Birkhäuser, Basel (2001)
Buchholz, S.: A theory of neural computation with Clifford algebras. Thesis, Kiel: Christian-Albrechts-Universitat (2005)
Buchholz, S., Tachibana, K., Hitzer, E.: Optimal learning rates for Clifford neurons. In: Proc. of ICANN 2007, Part I. LNCS, vol. 4668, pp. 864–873. Springer, Berlin (2007)
Clifford, W.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1(4), 350–358 (1878)
Cruz, B., Sossa, H., Barron, R.: A new two level associative memory for efficient pattern restoration. Neural Process. Lett. 25, 1–16 (2007)
Cruz, B., Barron, R., Sossa, H.: Geometric associative memory model with application to pattern classification. In: Proc. 3rd Internat. Conf. on Appl. of Geom. Algebras in Comput. Sci. and Eng., AGACSE 2008 (2008)
Hitzer, E.: Euclidean geometric objects in the Clifford geometric algebra of origin, 3-space, infinity. Bull. Belg. Math. Soc. 11(5), 653–662 (2004)
Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Springer, Berlin (1984)
Hestenes, D.: Old wine in new bottles. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra: A Geometric Approach to Computer Vision, Quantum and Neural Computing, Robotics, and Engineering, pp. 498–520. Birkhäuser, Basel (2001)
Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras. vol. 40, pp. 3–23. Springer, Heidelberg (2001)
Hildebrand, D.: Geometric computing in computer graphics using conformal geometric algebra. Tutorial, TU Darmstadt, Germany: Interact. Graph. Syst. Group (2005)
Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)
Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C-21(4), 353–359 (1972)
Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras. vol. 40, pp. 27–52. Springer, Heidelberg (2001)
McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)
Nakano, K.: Associatron a model or associative memory. IEEE Trans. Syst., Man Cybern 12, 380–388 (1972)
Ritter, G., Sussner, P., Diaz-de-Leon, J.: Morphological associative memories. IEEE Trans. Neural Netw. 9(2), 281–293 (1998)
Sossa, H., Barron, R.: New associative model for pattern recall in the presence of mixed noise. IASTED Fifth Int. Conf. on Signal and Image Process. (SIP 2003), pp. 485–490 (2003)
Steinbouch, K.: Die Lernmatrix. Kybernetik 1(1), 26–45 (1961)
Sussner, P.: Observations on morphological associative memories and the kernel method. Neurocomputing 31, 167–183 (2003)
Yañez, C., Diaz-de-Leon, J.: Introducción a las memorias asociativas. Mexico: Res. in Comp. Sci. (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London
About this chapter
Cite this chapter
Cruz, B., Barron, R., Sossa, H. (2010). Geometric Associative Memories and Their Applications to Pattern Classification. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_11
Download citation
DOI: https://doi.org/10.1007/978-1-84996-108-0_11
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-84996-107-3
Online ISBN: 978-1-84996-108-0
eBook Packages: Computer ScienceComputer Science (R0)