Skip to main content

Classification and Clustering of Spatial Patterns with Geometric Algebra

  • Chapter
  • First Online:
Geometric Algebra Computing

Abstract

In fields of classification and clustering of patterns most conventional methods of feature extraction do not pay much attention to the geometric properties of data, even in cases where the data have spatial features. This paper proposes to use geometric algebra to systematically extract geometric features from data given in a vector space. We show the results of classification of handwritten digits and those of clustering of consumers’ impression with the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 229.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  2. Mukundan, R., Ramakrishman, K.R.: Moment Functions in Image Analysis, Theory and Application. World Scientific, Singapore (1998)

    Google Scholar 

  3. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  4. Hestenes, D.: New Foundations for Classical Mechanics. Springer, Dordrecht (1986)

    MATH  Google Scholar 

  5. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry. Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, San Mateo (2007)

    Google Scholar 

  6. Sekita, I., Kurita, T., Otsu, N.: Complex autoregressive model for shape recognition. IEEE Trans. Pattern Anal. Mach. Intell. 14(4), 489–496 (1992)

    Article  Google Scholar 

  7. Hirose, A.: Complex-Valued Neural Networks: Theories and Applications. Series on Innovative Intelligence, vol. 5. World Scientific, Singapore (2006)

    Google Scholar 

  8. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion neural network with geometrical operators. J. Intell. Fuzzy Syst. 15(3–4), 149–164 (2004)

    MATH  Google Scholar 

  9. Buchholz, S., Le Bihan, N.: Optimal separation of polarized signals by quaternionic neural networks. In: 14th European Signal Processing Conference, EUSIPCO 2006, September 4–8, Florence, Italy (2006)

    Google Scholar 

  10. Nitta, T.: An extension of the back-propagation algorithm to complex numbers. Neural Netw. 10(8), 1391–1415 (1997)

    Article  Google Scholar 

  11. Hildenbrand, D., Hitzer, E.: Analysis of point clouds using conformal geometric algebra. In: 3rd International Conference on Computer Graphics Theory and Applications, Funchal, Madeira, Portugal (2008)

    Google Scholar 

  12. Hitzer, E.: Quaternion Fourier transform on quaternion fields and generalizations. Adv. Appl. Clifford Algebr. 17(3), 497–517 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sommer, G.: Geometric Computing with Clifford Algebras. Springer, Berlin (2001)

    MATH  Google Scholar 

  14. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  15. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine (2007)

    Google Scholar 

  16. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analysers. Neural Comput. 11, 443–482 (1999)

    Article  Google Scholar 

  17. Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In: ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining (2003)

    Google Scholar 

  18. Cristianini, N., Kandola, J., Elisseeff, A., Shawe-Taylor, J.: On kernel target alignment. J. Mach. Learn. Res. (2002)

    Google Scholar 

  19. Meinicke, P., Ritter, H.: Resolution-based complexity control for Gaussian mixture models. Neural Comput. 13(2), 453–475 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Tuan Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Pham, M.T., Tachibana, K., Hitzer, E.M.S., Yoshikawa, T., Furuhashi, T. (2010). Classification and Clustering of Spatial Patterns with Geometric Algebra. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-108-0_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-107-3

  • Online ISBN: 978-1-84996-108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics