Abstract
This article deals with some classes of fluid flow problems under given initial-value and boundary-value conditions. Using a quaternionic operator calculus, representations of solutions are constructed. For the case of a bounded velocity, a numerically stable semi-discretization procedure for the solution of the problem is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bahmann, H., Gürlebeck, K., Shapiro, M., Sprößig, W.: On a modified Teodorescu transform. Integral Transform. Spec. Funct. 12(3), 213–226 (2001)
Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman Research Notes Math., vol. 76. Pitman, London (1982)
Faustino, N., Gürlebeck, K., Hommel, A., Kähler, U.: Difference potentials for the Navier–Stokes equations in unbounded domains. J. Differ. Equ. Appl. 12(6), 577–596 (2006)
Fengler, M.J.: Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier–Stokes equation on the sphere. Shaker, D386 (2005)
Gürlebeck, K.: Grundlagen einer diskreten räumlich verallgemeinerten Funktionentheorie und ihrer Anwendungen. Habilitationsschrift, TU Karl-Marx-Stadt (1988)
Gürlebeck, K., Hommel, A.: On finite difference potentials and their applications in a discrete function theory. Math. Methods Appl. Sci. 25(16–18), 1563–1576 (2002)
Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel (1990)
Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice. Wiley, New York (1997)
Gürlebeck, K., Sprößig, W.: Representation theory for classes of initial value problems with quaternionic analysis. Math. Methods Appl. Sci. 25, 1371–1382 (2002)
Hung, L.U.: Finite Element Analysis of Non-Newtonian Flow. Springer, Berlin (1989)
Ishimura, N., Nakamura, M.: Uniqueness for unbounded classical solutions of the MHD equations. MMAS 20, 617–623 (1997)
Le, T.H., Sprößig, W.: On a new notion of holomorphy and its applications. Cubo Math. J. 11(1), 145–162 (2008)
Majda, A.: Introduction to PDE’s and Waves for Atmosphere and Ocean. Courant-Lecture Notes, vol. 9. Courant Institute of Mathematical Sciences, New York (2003)
Przeworska-Rolewicz, D.: Algebraic theory of right invertible operators. Stud. Math. 48, 129–144 (1973)
Rajagapol, K.R.: Mechanics of Non-Newtonian Fluids. Pitman, London (1998)
Ryabenskij, V.S.: The Method of Difference Potentials for Some Problems of Continuum Mechanics. Nauka, Moscow (1987) (in Russian)
Schlichting, A., Sprößig, W.: Norm estimations of the modified Teodorescu transform with application to a multidimensional equation of Airy’s type. In: Simos, Th.E., Psihoyios, G., Tsitouras, Ch. (eds.) Numerical Analysis and Applied Mathematics. American Institute of Physics (AIP) Conference Series, vol. 1048 (2008)
Sprößig, W., Gürlebeck, K.: Representation theory for classes of initial value problems with quaternionic analysis. Math. Methods Appl. Sci. 25, 1371–1382 (2002)
Sprößig, W.: Fluid flow equations with variable viscosity in quaternionic setting. In: Advances in Applied Clifford Algebras, vol. 17, pp. 259–272. Birkhäuser, Basel (2007)
Tasche, M.: Eine einheitliche Herleitung verschiedener Interpolationsformeln mittels der Taylorschen Formel der Operatorenrechnung. Z. Angew. Math. Mech. 61, 379–393 (1981) (in German)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London
About this chapter
Cite this chapter
Gürlebeck, K., Sprößig, W. (2010). Fluid Flow Problems with Quaternionic Analysis—An Alternative Conception. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_17
Download citation
DOI: https://doi.org/10.1007/978-1-84996-108-0_17
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-84996-107-3
Online ISBN: 978-1-84996-108-0
eBook Packages: Computer ScienceComputer Science (R0)