Abstract
The Space Group Visualizer (SGV) for all 230 3D space groups is a standalone PC application based on the visualization software CLUCalc. We first explain the unique geometric algebra structure behind the SGV. In the second part we review the main features of the SGV: The GUI, group and symmetry selection, mouse pointer interactivity, and visualization options. We further introduce the joint use with Hahn (Space-group Symmetry, 5th edn., International Tables of Crystallography, vol. A, Springer, Dordrecht, 2005). In the third part we explain how to represent the 162 so-called subperiodic groups of crystallography in geometric algebra. We construct a new compact geometric algebra group representation symbol, which allows us to read off the complete set of geometric algebra generators. For clarity, we moreover state explicitly which generators are chosen. The group symbols are based on the representation of point groups in geometric algebra by versors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahlfors, L.: Clifford numbers and Moebius transformations in ℝn. In: Chisholm, J., Common, A. (eds.) Clifford Algebras and Their Applications in Mathematical Physics. Reidel, Dordrecht (1986)
Angles, P.: Construction de revêtements du groupe conforme d’un espace vectoriel muni d’une métrique de type (p,q). Ann. IHP Sect. A 33(1), 33–51 (1980)
Angles, P.: Conformal Groups in Geometry and Spin Structures. Progress in Mathematical Physics. Birkhäuser, Basel (2007)
Aragón-González, G., Aragón, J.L., Rodríguez-Andrade, M.A., Verde-Star, L.: Reflections, rotations, and Pythagorean numbers. Adv. Appl. Clifford Algebr. Online First (2008)
Bonola, R.: La Geometria Non-euclidia: Exposizione Storico-Critico del Suo Sviluppo. Zanichelli, Bologna (1906). Translated by H.S. Carslaw, Non-Euclidean Geometry. Dover, New York (1955). References to Friedrich Ludwig Wachter’s horosphere on pp. 62, 63 and 88. Download version: http://www.archive.org/details/noneuclideangeom00bonorich
Cartan, E.: La Théorie des Spineurs I, II. Actualités Scientifiques et Industrielles, vol. 643. Hermann, Paris (1938)
Cox, H.: Application of Grassmann’s Ausdehnungslehre to properties of circles. Q. J. Pure Appl. Math. 25, 1–71 (1891)
Coxeter, H.S.M.: Discrete groups generated by reflections. Ann. Math. 35, 588–621 (1934)
Coxeter, H.S.M.: Non-Euclidean Geometry, Toronto, 1942, 3rd edn. Oxford University Press, Cambridge (1957). References to Friedrich Ludwig Wachter’s horosphere on pp. 7 and 220
Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups, 4th edn. Springer, Berlin (1980)
Crumeyrolle, A.: Chap. 12 of Orthogonal and Symplectic Clifford Algebras. Kluwer, Dordrecht (1990)
Dieudonné, J.: Sur les Groupes Classiques. Actualités Scientifiques et Industrielles, vol. 1040. Hermann, Paris (1948)
Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry. Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, San Mateo (2007)
Dress, A.W.M., Havel, T.F.: Distance geometry and geometric algebra. Found. Phys. 23(10), 1357–1374 (1993)
Engel, P., Matsumoto, T., Steinmann, G., Wondratschek, H.: The non-characteristic orbits of the space groups. Z. Kristallogr., Supplement Issue No. 1. Raumgruppen-Projektionen. In Abhandlungen der Mathematisch-Physikalischen Klasse der Sächsischen Akademie (1984)
Forder, H.G.: The Calculus of Extension. Cambridge University Press, Cambridge (1941)
Gallier, J.: Geometric Methods and Applications. For Computer Science and Engineering. Springer, New York (2001). Chap. 7
Gutierrez, J.D.M.: Operaciones de simitria mediante algebra geometrica aplicadas a grupos cristalograficos. Thesis, UNAM, Mexico (1996)
Hahn, T. (ed.) Space-group Symmetry, 5th edn. International Tables of Crystallography, vol. A. Springer, Dordrecht (2005). Online: it.iucr.org
Hestenes, D.: Old wine in new bottles. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Geometric Algebra: A Geometric Approach to Computer Vision, Quantum and Neural Computing, Robotics, and Engineering, pp. 498–520. Birkhäuser, Basel (2001)
Hestenes, D.: Point groups and space groups in geometric algebra. In: Dorst, L., et al. (ed.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 3–34. Birkhäuser, Basel (2002)
Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71(7), 691–714 (2003)
Hestenes, D., Holt, J.: The crystallographic space groups in geometric algebra. J. Math. Phys. 48, 023514 (2007)
Hestenes, D., Li, H., Rockwood, A.: New algebraic tools for classical geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 4–26. Springer, Berlin (2001)
Hitzer, E.: Euclidean Geometric Objects in the Clifford Geometric Algebra of {Origin, 3-Space, Infinity}. Bull. Belg. Math. Soc. Simon Stevin 11(5), 653–662 (2004)
Hitzer, E.: Conic sections and meet intersections in geometric algebra, computer algebra and geometric algebra with applications. Lecture Notes in Computer Science, vol. 3519, pp. 350–362. Springer, Berlin (2005). GIAE 2004, Revised Selected Papers
Hitzer, E., Perwass, C.: Crystal cells in geometric algebra. In: Proc. Int. Symp. on Adv. Mech. Eng. (ISAME), Fukui, pp. 290–295 (2004)
Hitzer, E., Perwass, C.: Full geometric description of all symmetry elements of crystal space groups by the suitable choice of only three vectors for each bravais cell or crystal family. ISAME, Busan, pp. 19–25 (2005)
Hitzer, E., Perwass, C.: Crystal cell and space lattice symmetries in Clifford geometric algebra. In: Simos, T.E., et al. (ed.) Int. Conf. on Numerical Analysis and Applied Mathematics, Rhodes, pp. 937–941. Wiley, VCH, New York, Weinheim (2005)
Hitzer, E., Perwass, C.: Space group visualizer for monoclinic space groups. Bull. Soc. Sci. Form 21, 38–39 (2006)
Hitzer, E., Perwass, C.: The space group visualizer. In: Proceedings of ISAMPE, pp. 172–181 (2006)
Hitzer, E., Perwass, C.: Three vector generation of crystal space groups in geometric algebra. Bull. Soc. Sci. Form 21, 55–56 (2006)
Hitzer, E., Perwass, C.: Interactive 3D space group visualization with CLUCalc and the Clifford geometric algebra description of space groups. Proc. of ICCA8, Las Campinas, Brazil (2008, accepted)
Hitzer, E., Tachibana, K., Buchholz, S., Yu, I.: Carrier method for the general evaluation and control of pose, molecular conformation, tracking, and the like. Adv. Appl. Clifford Algebr. Online First (2009)
Kopcik, V.A.: Subnikovskie Gruppy: Spravochnik po Simmetrii i Fizicheskim Svoistvam Kristallicheskikh Struktur. Izd. Moskovskogo Univ., Moskva (1966). 722 p. (in Russian)
Kopsky, V., Litvin, D.B. (eds.): Subperiodic Groups, 1st edn. International Tables for Crystallography, vol. E. Kluwer, Dordrecht (2002). Online: it.iucr.org
Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)
Lie, S.: On a Class of Geometric Transformations. University of Oslo Press, Oslo (1872)
Litvin, D.B.: Tables of properties of magnetic subperiodic groups. Acta Crystallogr. Sect. A, Found. Crystallogr. A 61, 382–385 (2005)
Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)
Lounesto, P., Latvamaa, E.: Conformal transformations and Clifford algebras. Proc. Am. Math. Soc. 79(4), 533–538 (1980)
Maks, J.: Modulo (1,1) periodicity of Clifford algebras and generalized (anti-) Moebius transformations. Thesis, Delft University of Technology, The Netherlands (1989)
Perwass, C.: CLUCalc—interactive visualization. www.clucalc.info
Perwass, C., Hitzer, E.: Interactive visualization of full geometric description of crystal space groups. ISAME, Busan, pp. 276–282 (2005)
Perwass, C., Hitzer, E.: Space group visualizer. www.spacegroup.info (2005)
Souvignier, B.: Space groups. Syllabus for MaThCryst summer school, 15–20 July 2007, Havanna, Cuba
The Holy Bible, New International Version. International Bible Society, Colorado Springs (1984)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London
About this chapter
Cite this chapter
Hitzer, E.M.S., Perwass, C., Ichikawa, D. (2010). Interactive 3D Space Group Visualization with CLUCalc and Crystallographic Subperiodic Groups in Geometric Algebra. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_18
Download citation
DOI: https://doi.org/10.1007/978-1-84996-108-0_18
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-84996-107-3
Online ISBN: 978-1-84996-108-0
eBook Packages: Computer ScienceComputer Science (R0)