Skip to main content

Geometric Algebra Model of Distributed Representations

  • Chapter
  • First Online:
Geometric Algebra Computing

Abstract

Formalism based on GA is an alternative to distributed representation models developed so far: Smolensky’s tensor product, Holographic Reduced Representations (HRR), and Binary Spatter Code (BSC). Convolutions are replaced by geometric products interpretable in terms of geometry, which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aerts, D., Czachor, M., De Moor, B.: On geometric-algebra representation of binary spatter codes. Preprint (2006). arXiv:cs/0610075 [cs.AI]

  2. Aerts, D., Czachor, M.: Cartoon computation: Quantum-like algorithms without quantum mechanics. J. Phys. A 40, F259 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aerts, D., Czachor, M.: Tensor-product vs. geometric-product coding. Phys. Rev. A 77, 012316 (2008). arXiv:0709.1268 [quant-ph]

    Article  MathSciNet  Google Scholar 

  4. Aerts, D., Czachor, M., De Moor, B.: Geometric analogue of holographic reduced representation. Preprint (2007). arXiv:0710.2611

  5. Bayro-Corrochano, E.: Handbook of Geometric Computing. Springer, Berlin (2005)

    Google Scholar 

  6. Czachor, M.: Elementary gates for cartoon computation. J. Phys. A 40, F753 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan-Kauffman, San Mateo (2007)

    Google Scholar 

  8. Hestenes, D.: Space-Time Algebra. Gordon and Breach, New York (1966)

    MATH  Google Scholar 

  9. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  10. Kanerva, P.: Binary spatter codes of ordered k-tuples. In: von der Malsburg, C., et al. (eds.) Artificial Neural Networks ICANN Proceedings. Lecture Notes in Computer Science, vol. 1112, pp. 869–873. Springer, Berlin (1996)

    Google Scholar 

  11. Kanerva, P.: Fully distributed representation. In: Proc. 1997 Real World Computing Symposium (RWC’97, Tokyo), Real World Computing Partnership, Tsukuba-City, Japan, pp. 358–365 (1997)

    Google Scholar 

  12. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  13. Plate, T.: Holographic Reduced Representation: Distributed Representation for Cognitive Structures. CSLI Publications, Stanford (2003)

    Google Scholar 

  14. Smolensky, P.: Tensor product variable binding and the representation of symbolic structures in connectionist systems. Artif. Intell. 46, 159–216 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Smolensky, P., Dolan, C.: Tensor product production system: a modular architecture and representation. Connect. Sci. 1(1), 53–68 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Patyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Patyk, A. (2010). Geometric Algebra Model of Distributed Representations. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-108-0_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-107-3

  • Online ISBN: 978-1-84996-108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics