Skip to main content

Efficient Algorithms for Factorization and Join of Blades

  • Chapter
  • First Online:
Geometric Algebra Computing

Abstract

Subspaces are powerful tools for modeling geometry. In geometric algebra, they are represented using blades and constructed using the outer product. Producing the actual geometrical intersection (meet) and union (join) of subspaces, rather than the simplified linearizations often used in Grassmann–Cayley algebra, requires efficient algorithms when blades are represented as a sum of basis blades. We present an efficient blade factorization algorithm and use it to produce implementations of the join that are approximately 10 times faster than earlier algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablamowicz, R., Fauser, B.: CLIFFORD—a Maple package for Clifford algebra computations with bigebra, http://math.tntech.edu/rafal/cliff12/, March 2009

  2. Bell, I.: Personal communication (2004–2005)

    Google Scholar 

  3. Bouma, T.: Projection and factorization in geometric algebra. Unpublished paper (2001)

    Google Scholar 

  4. Bouma, T., Dorst, L., Pijls, H.: Geometric algebra for subspace operations. Acta Math. Appl. 73, 285–300 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dorst, L.: The inner products of geometric algebra. In: Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 35–46. Birkhäuser, Basel (2002)

    Google Scholar 

  6. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry. Morgan Kaufmann, San Mateo (2007)

    Google Scholar 

  7. Eastwood, M., Michor, P.: Some remarks on the Plücker relations. Rendiconti del Circolo Matematico di Palermo, pp. 85–88 (2000)

    Google Scholar 

  8. Fauser, B.: A treatise on quantum Clifford algebras. Habilitation, Uni. Konstanz, Jan. 2003

    Google Scholar 

  9. Fontijne, D.: Gaigen 2: a geometric algebra implementation generator. GPCE 2006 Proceedings

    Google Scholar 

  10. Fontijne, D.: Efficient Implementation of geometric algebra. Ph.D. thesis, University of Amsterdam (2007). http://www.science.uva.nl/~fontijne/phd.html

  11. Hildenbrand, D., Koch, A.: Gaalop—high performance computing based on conformal geometric algebra. In: AGACSE 2008 Proceedings. Springer, Berlin (2008)

    Google Scholar 

  12. Perwass, C.: The CLU project, Clifford algebra library and utilities. http://www.perwass.de/cbup/programs.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Fontijne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Fontijne, D., Dorst, L. (2010). Efficient Algorithms for Factorization and Join of Blades. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-108-0_21

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-107-3

  • Online ISBN: 978-1-84996-108-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics