Abstract
We present Gaalop (Geometric algebra algorithms optimizer), our tool for high-performance computing based on conformal geometric algebra. The main goal of Gaalop is to realize implementations that are most likely faster than conventional solutions. In order to achieve this goal, our focus is on parallel target platforms like FPGA (field-programmable gate arrays) or the CUDA technology from NVIDIA. We describe the concepts, current status, and future perspectives of Gaalop dealing with optimized software implementations, hardware implementations, and mixed solutions. An inverse kinematics algorithm of a humanoid robot is described as an example.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abłamowicz, R., Fauser, B.: Clifford/bigebra, a Maple package for Clifford (co)algebra computations (2009). ©1996–2009, RA&BF
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-Oriented Approach to Geometry. Morgan Kaufman, San Mateo (2007)
Fontijne, D.: Efficient implementation of geometric algebra. Ph.D. thesis, University of Amsterdam (2007)
Franchini, S., Gentile, A., Grimaudo, M., Hung, C.A., Impastato, S., Sorbello, F., Vassallo, G., Vitabile, S.: A sliced coprocessor for native Clifford algebra operations. In: Euromico Conference on Digital System Design, Architectures, Methods and Tools (DSD) (2007)
Gentile, A., Segreto, S., Sorbello, F., Vassallo, G., Vitabile, S., Vullo, V.: Cliffosor, an innovative FPGA-based architecture for geometric algebra. In: ERSA 2005, pp. 211–217 (2005)
Hildenbrand, D.: Geometric computing in computer graphics using conformal geometric algebra. Comput. Graph. 29(5), 802–810 (2005)
Hildenbrand, D., Pitt, J.: The Gaalop homepage. Available at http://www.gaalop.de (2010)
Hildenbrand, D., Fontijne, D., Perwass, C., Dorst, L.: Tutorial geometric algebra and its application to computer graphics. In: Eurographics Conference Grenoble (2004)
Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., Dorst, L.: Competitive runtime performance for inverse kinematics algorithms using Conformal geometric algebra. In: Eurographics Conference Vienna (2006)
Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algorithm based on conformal geometric algebra using reconfigurable hardware. In: GRAPP Conference Madeira (2008)
Kasprzyk, N., Koch, A.: High-level-language compilation for reconfigurable computers. In: Proceedings International Conference on Reconfigurable Communication-centric SoCs (ReCoSoC) (2005)
Mishra, B., Wilson, P.R.: Color edge detection hardware based on geometric algebra. In: European Conference on Visual Media Production (CVMP) (2006)
Mishra, B. Wilson, P.R.: VLSI implementation of a geometric algebra parallel processing core. Technical report, Electronic Systems Design Group, University of Southampton, UK (2006)
NVIDIA. The CUDA homepage. Available at http://www.nvidia.com/object/cuda_home.html (2009)
Perwass, C.: The CLU homepage. Available at http://www.clucalc.info (2010)
Perwass, C., Gebken, C., Sommer, G.: Implementation of a Clifford algebra co-processor design on a field programmable gate array. In: Ablamowicz, R. (ed.) CLIFFORD ALGEBRAS: Application to Mathematics, Physics, and Engineering. Progress in Mathematical Physics, pp. 561–575. Birkhäuser, Basel (2003). 6th Int. Conf. on Clifford Algebras and Applications, Cookeville, TN
The RoboCup Federation. Robocup official site. Available at http://www.robocup.org
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London
About this chapter
Cite this chapter
Hildenbrand, D., Pitt, J., Koch, A. (2010). Gaalop—High Performance Parallel Computing Based on Conformal Geometric Algebra. In: Bayro-Corrochano, E., Scheuermann, G. (eds) Geometric Algebra Computing. Springer, London. https://doi.org/10.1007/978-1-84996-108-0_22
Download citation
DOI: https://doi.org/10.1007/978-1-84996-108-0_22
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-84996-107-3
Online ISBN: 978-1-84996-108-0
eBook Packages: Computer ScienceComputer Science (R0)