Abstract
Cellular automata provide a means of obtaining complex behaviour from a simple array of cells and a deterministic transition function. They supply a method of computation that dispenses with the need for manipulation of individual cells and they are computationally universal. Classical cellular automata have proved of great interest to computer scientists but the construction of quantum cellular automata pose particular difficulties. We present a version of John Conway’s famous two-dimensional classical cellular automata Life that has some quantum-like features, including interference effects. Some basic structures in the new automata are given and comparisons are made with Conway’s game.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J. Comput. Syst. Sci. 6, 448–464 (1972)
Auon, B., Tarifi, M.: Introduction to quantum cellular automata. Eprint: arXiv:quant-ph/0401123 (2004)
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, J., Smolin J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)
Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)
Benjamin, S.C.: Schemes for parallel quantum computation without local control of qubits. Phys. Rev. A 61, 020301 (2000)
Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2. Academic Press, London (1982)
Dumke, R., Volk, M., Muether, T., Buchkremer, F.B.J., Birkl, G., Ertmer, W.: Microoptical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. Phys. Rev. Lett. 89, 097903 (2002)
Dürr, C., Santha, M.: A decision procedure for well-formed unitary linear quantum cellular automata. SIAM J. Comput. 31, 1076–1089 (2002)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)
Gardner, M.: Mathematical games: The fantastic combinations of John Conway’s new solitaire game of “Life”. Sci. Am. 223(10), 120 (1970)
Gardner, M.: Mathematical games: On cellular automata, self-reproduction, the Garden of Eden and the game of “Life”. Sci. Am. 224(2), 116 (1971)
Gardner, M.: Wheels, Life and Other Mathematical Amusements. Freeman, New York (1983)
Grössing, G., Zeilinger, A.: Quantum cellular automata. Complex Syst. 2, 197–208 (1988)
Grössing, G., Zeilinger, A.: Structures in quantum cellular automata. Physica B 151, 366–370 (1988)
Gruska, J.: Quantum Computing. McGraw Hill, Maidenhead (1999)
Kari, J.: Reversibility of two-dimensional cellular automata is undecidable. Physica D 45, 379–385 (1990)
Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44, 307–327 (2003)
Konno, N.: Quantum Walks and Quantum Cellular Automata. Lecture Notes in Computer Science. Springer, Berlin/Heidelberg (2008)
Konno, N., Mistuda, K., Soshi, T., Yoo, H.J.: Quantum walks and reversible cellular automata. Phys. Lett. A 330, 408–417 (2004)
Lloyd, S.: Obituary: Rolf Laundauer. Nature 400, 720 (1999)
Mandel, D., Greiner, M., Widera, A., Rom, T., Hänsch, T.W., Bloch, I.: Coherent transport of neutral atoms in spin-dependent optical lattice potentials. Phys. Rev. Lett. 91, 010407 (2003)
Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)
Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theor. Comput. Sci. 148, 157–163 (1995)
Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. Trans. IEICE 72, 758–762 (1989)
Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Schumacher, B., Werner, R.F.: Reversible quantum cellular automata. Eprint: arXiv:quant-ph/0405174 (2004)
Silver, S.A.: http://www.bitstorm.org/gameoflife/lexicon
Toffoli, T.: Cellular automata mechanics. PhD thesis, The University of Michigan (1977)
Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)
Wolfram, S.: Mathematica: A System for Doing Mathematics by Computer. Addison–Wesley, Redwood City (1988)
Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London Limited
About this chapter
Cite this chapter
Flitney, A.P., Abbott, D. (2010). Towards a Quantum Game of Life. In: Adamatzky, A. (eds) Game of Life Cellular Automata. Springer, London. https://doi.org/10.1007/978-1-84996-217-9_23
Download citation
DOI: https://doi.org/10.1007/978-1-84996-217-9_23
Publisher Name: Springer, London
Print ISBN: 978-1-84996-216-2
Online ISBN: 978-1-84996-217-9
eBook Packages: Computer ScienceComputer Science (R0)