Abstract
We first discuss two MATLAB-centered solutions for real-time data streaming, the environments FieldTrip (Donders Institute, Nijmegen) and DataSuite (Data- River, Producer, MatRiver) (Swartz Center, La Jolla). We illustrate the relative simplicity of coding BCI feature extraction and classification under MATLAB (The Mathworks, Inc.) using a minimalist BCI example, and then describe BCILAB (Team PhyPa, Berlin), a new BCI package that uses the data structures and extends the capabilities of the widely used EEGLAB signal processing environment. We finally review the range of standalone and MATLAB-based software currently freely available to BCI researchers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adapt © 1987–2003 and Varieté, © 2000, 2001 are property of EEG Solutions LLC, and are used under free license for scientific non-profit research
Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159
Babiloni F, et al. (1995) Performances of surface Laplacian estimators: A study of simulated and real scalp potential distributions. Brain Topogr 8(1):35–45
Bilmes J (1998) Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. International Computer Science Institute
Birbaumer N, et al. (2009) Neurofeedback and brain-computer interface clinical applications. Int Rev Neurobiol 86:107–187
Blankertz B, Curio G, Müller K (2002a) Classifying single trial EEG: Towards brain computer interfacing. In: Diettrich T, Becker S, Ghahramani Z (eds) Advances in Neural Inf Proc Systems (NIPS 01), pp 157–164
Blankertz B, et al (2002b) Single trial detection of EEG error potentials: A tool for increasing BCI transmission rates. In: Artificial Neural Networks—ICANN 2002
Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21
Dornhege G, Blankertz B, Curio G (2003a) Speeding up classification of multi-channel brain-computer interfaces: Common spatial patterns for slow cortical potentials. In: First International IEEE EMBS Conference on In Neural Engineering
Dornhege G, et al (2003b) Combining features for BCI, In: Becker S, Thrun S, Obermayer K (eds), Proc Systems (NIPS 02), pp 1115–1122
Farwell L, Donchin E (1988) Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523
Figueiredo M, Jain A (2002) Unsupervised learning on finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3)
Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188
Friedman J (2002) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175
Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554
Jaakkola T, Jordan M (1997) A variational approach to Bayesian logistic regression models and their extensions. In: Sixth International Workshop on Artificial Intelligence and Statistics
Jung T-P, et al. (1997) Estimating alertness from the EEG power spectrum. IEEE Trans Biomed Eng 44(1):60–69
Kothe C (2009) Design and Implementation of a Research Brain-Computer Interface. Berlin Institute of Technology, Berlin. Section 8.2.1
Lin C-T, et al. (2008) A noninvasive prosthetic platform using mobile & wireless EEG. Proc IEEE 96(7):1167–1183
Makeig S, et al. (2009) Linking brain, mind and behavior. Int J Psychophysiol 73(2):95–100
Makeig S, et al. (2002) Dynamic brain sources of visual evoked responses. Science 295(5555):690–694
Makeig S, Inlow M (1993) Lapses in alertness: Coherence of fluctuations in performance and EEG spectrum. Electroencephalogr Clin Neurophysiol 86(1):23–35
Makeig S, et al (1996) Independent component analysis of electroencephalographic data. In: Touretzky D, Mozer M, Hasselmo M (eds), Advances in Neural Information Processing Systems, pp 145–151
Miner LA, McFarland DJ, Wolpaw JR (1998) Answering questions with an electroencephalogram-based brain-computer interface. Arch Phys Med Rehabil 79(9):1029–1033
Palmer JA, et al (2007) Modeling and estimation of dependent subspaces with non-radially symmetric and skewed densities. In: 7th International Conference on Independent Component Analysis and Signal Separation, London, UK
Perrin F et al. (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66(1):75–81
Ramoser H, Müller-Gerking J, Pfurtscheller G (1998) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 1998(8):441–446
Schalk G, et al. (2004) BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043
Schlögl A (2000) The electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications. Shaker Verlag, Aachen. ISBN3-8265-7640-3
Schlögl A, Brunner C (2000) Biosig: A free and open source software library for BCI research. Computer 41(10):44–50
Schölkopf B, Smola A (2002) Learning with Kernels. MIT Press, Cambridge, MA
Sellers E, et al. (2006) A p300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biol Psychol 73(3):242–252
Tipping M (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244
Tomioka R et al. (2006) An iterative algorithm for spatio-temporal filter optimization. In: 3rd International BCI Workshop and Training Course. Verlag der Technischen Universität Graz, Graz
Venthur B, Blankertz B (2008) A platform-independent open-source feedback framework for BCI systems. In: 4th International Brain-Computer Interface Workshop and Training Course
Vidaurre C, Schlögl (2008) A comparison of adaptive features with linear discriminant classifier for brain computer interfaces. In: Engineering in Medicine and Biology Society. EMBS 2008. 30th Annual International Conference of the IEEE
Vlassis N, Likas A, Greedy EM (2002) Algorithm for Gaussian Mixture Learning. Neural Processing Letters, vol 15. Kluwer Academic Publishers, Dordrecht
Zander T, Jatzev S (2009) Detecting affective covert user states with passive brain-computer interfaces. In: ACII 2009. IEEE Computer Society Press, Los Alamitos, CA
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag London Limited
About this chapter
Cite this chapter
Delorme, A. et al. (2010). MATLAB-Based Tools for BCI Research. In: Tan, D., Nijholt, A. (eds) Brain-Computer Interfaces. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-272-8_14
Download citation
DOI: https://doi.org/10.1007/978-1-84996-272-8_14
Publisher Name: Springer, London
Print ISBN: 978-1-84996-271-1
Online ISBN: 978-1-84996-272-8
eBook Packages: Computer ScienceComputer Science (R0)