Skip to main content

Using Rest Class and Control Paradigms for Brain Computer Interfacing

  • Chapter
Brain-Computer Interfaces

Abstract

The use of Electroencephalography (EEG) for Brain Computer Interface (BCI) provides a cost-efficient, safe, portable and easy to use BCI for both healthy users and the disabled. This chapter will first briefly review some of the current challenges in BCI research and then discuss two of them in more detail, namely modeling the “no command” (rest) state and the use of control paradigms in BCI. For effective prosthetic control of a BCI system or when employing BCI as an additional control-channel for gaming or other generic man machine interfacing, a user should not be required to be continuously in an active state, as is current practice. In our approach, the signals are first transduced by computing Gaussian probability distributions of signal features for each mental state, then a prior distribution of idle-state is inferred and subsequently adapted during use of the BCI. We furthermore investigate the effectiveness of introducing an intermediary state between state probabilities and interface command, driven by a dynamic control law, and outline the strategies used by two subjects to achieve idle state BCI control.

This chapter is a slightly revised version of: S. Fazli, M. Danóczy, F. Popescu, B. Blankertz, K.-R. Müller: Using Rest Class and Control Paradigms for Brain Computer Interfacing. IWANN (1) 2009: 651–665.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birbaumer N, Hinterberger T, Kübler A, Neumann N (2003) The thought-translation device (TTD): Neurobehavioral mechanisms and clinical outcome. IEEE Trans Neural Syst Rehabil Eng 11(2):120–123

    Article  Google Scholar 

  • Blankertz B, Müller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlögl A, Pfurtscheller G, Millán JdR, Schröder M, Birbaumer N (2006) The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159

    Article  Google Scholar 

  • Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G (2007a) The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects. Neuroimage 37(2):539–550

    Article  Google Scholar 

  • Blankertz B, Krauledat M, Dornhege G, Williamson J, Murray-Smith R, Müller KR (2007b) A note on brain actuated spelling with the Berlin Brain-Computer Interface. In: Stephanidis C (ed) Universal Access in HCI, Part II, HCII 2007. LNCS, vol 4555. Springer, Berlin, pp 759–768

    Google Scholar 

  • Blankertz B, Losch F, Krauledat M, Dornhege G, Curio G, Müller KR (2008a) The Berlin brain-computer interface: Accurate performance from first-session in BCI-naive subjects. IEEE Trans Biomed Eng 55(10):2452–2462

    Article  Google Scholar 

  • Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR (2008b) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56. DOI 10.1109/MSP.2008.4408441

    Article  Google Scholar 

  • Blankertz B, Sannelli C, Halder S, Hammer EM, Kübler A, Müller K-R, Curio G, Dickhaus T (2010) Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4):1303–1309. DOI 10.1016/j.neuroimage.2010.03.22

    Article  Google Scholar 

  • Borisoff JF, Mason SG, Bashashati A, Birch GE (2004) Brain-computer interface design for asynchronous control applications: Improvements to the LF-ASD asynchronous brain switch. IEEE Trans Biomed Eng 51(6):985–992

    Article  Google Scholar 

  • Dornhege G, Millán JdR, Hinterberger T, McFarland D, Müller KR (eds) (2007) Towards Brain-Computer Interfacing. MIT Press, Cambridge

    Google Scholar 

  • Fazli S, Popescu F, Danóczy M, Blankertz B, Müller KR, Grozea C (2009) Subject independent mental state classification in single trials. Neural Netw 22(9):1305–1312

    Article  Google Scholar 

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171

    Article  Google Scholar 

  • Koles ZJ (1991) The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. Electroencephalogr Clin Neurophysiol 79:440–447

    Article  Google Scholar 

  • Krauledat M, Losch F, Curio G (2006) Brain state differences between calibration and application session influence BCI classification accuracy. In: Proceedings of the 3rd International Brain-Computer Interface Workshop and Training Course 2006. Verlag der Technischen Universität Graz, Graz, pp 60–61

    Google Scholar 

  • Krauledat M, Tangermann M, Blankertz B, Müller KR (2008) Towards zero training for brain-computer interfacing. PLoS ONE 3:e2967

    Article  Google Scholar 

  • Krepki R, Blankertz B, Curio G, Müller KR (2007) The Berlin brain-computer interface (BBCI)—towards a new communication channel for online control in gaming applications. Multimedia Tools Appl 33(1):73–90. DOI 10.1007/s11042-006-0094-3

    Article  Google Scholar 

  • Kübler A, Kotchoubey B, Kaiser J, Wolpaw JR, Birbaumer N (2001) Brain-computer communication: Unlocking the locked in. Psychol Bull 127:358–375

    Article  Google Scholar 

  • Lemm S, Blankertz B, Curio G, Müller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52:1541–1548

    Article  Google Scholar 

  • Mason SG, Birch GE (2000) A brain-controlled switch for asynchronous control applications. IEEE Trans Biomed Eng 47(10):1297–1307

    Article  Google Scholar 

  • Millán JdR, Mouriño J (2003) Asynchronous BCI and local neural classifiers: An overview of the Adaptive Brain Interface project. IEEE Trans Neural Syst Rehabil Eng 11(2):159–161

    Article  Google Scholar 

  • Millán JdR, Renkens F, Mouriño J, Gerstner W (2006) Non-invasive brain-actuated control of a mobile robot by human EEG. In: 2006 IMIA Yearbook of Medical Informatics. Schattauer Verlag, Stuttgart

    Google Scholar 

  • Müller KR, Mika S, Ratsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201. DOI 10.1109/72.914517

    Article  Google Scholar 

  • Müller KR, Tangermann M, Dornhege G, Krauledat M, Curio G, Blankertz B (2008) Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. J Neurosci Methods 167:82–90

    Article  Google Scholar 

  • Nicolelis MA (2001) Actions from thoughts. Nature 409:403–407

    Article  Google Scholar 

  • Nijholt A, Tan D, Pfurtscheller G, Brunner C, Millán JdR, Allison B, Graimann B, Popescu F, Blankertz B, Müller KR (2008) Brain-computer interfacing for intelligent systems. IEEE Intell Syst 23(3):72–79. DOI 10.1109/MIS.2008.41

    Article  Google Scholar 

  • Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH (2006) Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1):153–159

    Article  Google Scholar 

  • Plotkin WB (1976) On the self-regulation of the occipital alpha rhythm: control strategies, states of consciousness, and the role of physiological feedback. J Exp Psychol Gen 105(1):66–99

    Article  Google Scholar 

  • Popescu F, Fazli S, Badower Y, Blankertz B, Müller KR (2007) Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS ONE 2(7):e637

    Article  Google Scholar 

  • Santhanam G, Ryu SI, Yu BM, Afshar A, Shenoy KV (2006) A high-performance brain-computer interface. Nature 442:195–198

    Article  Google Scholar 

  • Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043. DOI 10.1109/TBME.2004.827072

    Article  Google Scholar 

  • Shenoy P, Krauledat M, Blankertz B, Rao RP, Müller KR (2006) Towards adaptive classification for BCI. J Neural Eng 3:13–23

    Article  Google Scholar 

  • Solovey ET, Girouard A, Chauncey K, Hirshfield LM, Sassaroli A, Zheng F, Fantini S, Jacob RJ (2009) Using fnirs brain sensing in realistic HCI settings: Experiments and guidelines. In: UIST ’09: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology. ACM, New York, NY, USA, pp 157–166. DOI 10.1145/1622176.1622207

    Chapter  Google Scholar 

  • Sonnenburg S, Braun ML, Ong CS, Bengio S, Bottou L, Holmes G, LeCun Y, Müller KR, Pereira F, Rasmussen CE, Rätsch G, Schölkopf B, Smola A, Vincent P, Weston J, Williamson R (2007) The need for open source software in machine learning. J Mach Learn Res 8:2443–2466

    Google Scholar 

  • Sugiyama M, Krauledat M, Müller KR (2007) Covariate shift adaption by importance weighted cross validation. J Mach Learn Res 8:985–1005

    MATH  Google Scholar 

  • Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832

    Google Scholar 

  • Tomioka R, Müller KR (2010) A regularized discriminative framework for EEG analysis with application to brain-computer interface. NeuroImage 49(1):415–432

    Article  Google Scholar 

  • von Bünau P, Meinecke F, Kiraly F, Müller KR (2009) Estimating the stationary subspace from superimposed signals. Phys Rev Lett 103:214101

    Article  Google Scholar 

  • Wang Y, Zhang Z, Li Y, Gao X, Gao S, Yang F (2004) BCI competition 2003—data set IV: An algorithm based on CSSD and FDA for classifying single-trial EEG. IEEE Trans Biomed Eng 51(6):1081–1086

    Article  Google Scholar 

  • Williamson SJ, Kaufman L, Lu ZL, Wang JZ, Karron D (1997) Study of human occipital alpha rhythm: The alphon hypothesis and alpha suppression. Int J Psychophysiol 26(1–3):63–76

    Article  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  Google Scholar 

Download references

Acknowledgements

The studies were partly supported by BFNT, BMBF FKZ 01IBE01A/B, by DFG MU 987/3-1 and by the EU under PASCAL2. This publication only reflects the authors’ views.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamac Fazli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Fazli, S., Danóczy, M., Popescu, F., Blankertz, B., Müller, KR. (2010). Using Rest Class and Control Paradigms for Brain Computer Interfacing. In: Tan, D., Nijholt, A. (eds) Brain-Computer Interfaces. Human-Computer Interaction Series. Springer, London. https://doi.org/10.1007/978-1-84996-272-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-272-8_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-271-1

  • Online ISBN: 978-1-84996-272-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics