Skip to main content

Part of the book series: Computational Biology ((COBO,volume 16))

Abstract

Petri nets are very well suited for the representation of biological systems. Biological entities like proteins, metabolites, genes etc. can be defined as places; biochemical reactions, regulatory effects, modifications etc. can be defined as transitions. This 1 to 1 correspondence of molecules/reactions and places/transitions allows a very intuitive setup of a computational model framework. In this chapter, we will show how, additionally, the current states of biological entities and the reaction effects can be defined in a very intuitive and natural way using elements taken from fuzzy logic theory. Often exact data or detailed knowledge about concentrations, reaction kinetics or regulatory effects is missing. Thus, computational modeling of a biological system requires dealing with uncertainty and rough information provided by qualitative knowledge and linguistic descriptions. The Petri net and fuzzy logic (PNFL) approach allows natural language based descriptions of entities as well as (if-then) rule based definitions of reaction effects, both of which can easily and directly be derived from qualitative (linguistic) knowledge. PNFL bridges the gap between qualitative knowledge and quantitative modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldridge, B.B., Saez-Rodriguez, J., Muhlich, J.L., Sorger, P.K., Lauffenburger, D.A.: Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. Comput. Biol. 5(4), e1000340 (2009)

    Google Scholar 

  2. Bosl, W.: Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. BMC Syst. Biol. 1(1), 13 (2007)

    Article  Google Scholar 

  3. Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit Poisson tau-leaping. J. Chem. Phys. 123(5), 054104–054108 (2005)

    Article  Google Scholar 

  4. Erhard, F., Friedel, C.C., Zimmer, R.: FERN—a Java framework for stochastic simulation and evaluation of reaction networks. BMC Bioinform. 9, 356 (2008)

    Article  Google Scholar 

  5. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  6. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lee, C.C.: Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

    Article  MATH  Google Scholar 

  9. Marbach, D., Mattiussi, C., Floreano, D.: Combining multiple results of a reverse-engineering algorithm: application to the DREAM five-gene network challenge. Ann. NY Acad. Sci. 1158, 102–113 (2009)

    Article  Google Scholar 

  10. Marbach, D., Schaffter, T., Mattiussi, C., Floreano, D.: Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J. Comput. Biol. 16(2), 229–239 (2009)

    Article  Google Scholar 

  11. Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)

    Article  Google Scholar 

  12. Michels, K., Klawonn, F., Kruse, R., Nürnberger, A.: Fuzzy-Regelung. Grundlagen, Entwurf, Analyse. Springer, Berlin (2003)

    Google Scholar 

  13. Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  14. Puchałka, J., Kierzek, A.M.: Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. Biophys. J. 86(3), 1357–1372 (2004)

    Article  Google Scholar 

  15. Schaefer, G., Nakashima, T., Ishibuchi, H.: Gene expression analysis by fuzzy and hybrid fuzzy classification. In: Fuzzy Systems in Bioinformatics and Computational Biology, pp. 127–140 (2009)

    Google Scholar 

  16. Windhager, L., Zimmer, R.: Intuitive modeling of dynamic systems with Petri nets and fuzzy logic. In: Proc. German Conf. Bioinform., pp. 106–115 (2008)

    Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Windhager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Windhager, L., Erhard, F., Zimmer, R. (2011). Fuzzy Modeling. In: Koch, I., Reisig, W., Schreiber, F. (eds) Modeling in Systems Biology. Computational Biology, vol 16. Springer, London. https://doi.org/10.1007/978-1-84996-474-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-474-6_9

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-473-9

  • Online ISBN: 978-1-84996-474-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics