Skip to main content

SLIDE: An Efficient Secure Linguistic Steganography Detection Protocol

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11065))

Included in the following conference series:

  • 2335 Accesses

Abstract

Linguistic steganography detection aims at distinguishing between normal text and stego-text. In this paper, based on homomorphic cryptosystem, we propose an efficient secure protocol for linguistic steganography detection. The protocol involves a vendor holding a private detector of linguistic steganography and a user in possession of some private text documents consisting of stego-text and normal text. By cooperatively performing the secure two-party protocol, the user can securely obtain the detection results of his private documents returned by the vendor’s remote detector while both vendor and user learn nothing about the privacy of each other. It is shown the proposed protocol is still secure against probe attack. Experiment result and theoretical analysis confirm the efficiency, correctness, security, computation complexity and communication overheads of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-based computation. In: the 8th Workshop on Multimedia and Security, pp. 146–151. ACM (2006)

    Google Scholar 

  2. Brickell, J., Porter, D., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: the 14th ACM Conference on Computer and Communications Security, pp. 498–507 (2007)

    Google Scholar 

  3. Chang, W., Wu, J.: Privacy-preserved data publishing of evolving online social networks. J. Inf. Privacy Secur. 12(1), 14–31 (2016)

    Article  Google Scholar 

  4. Chang, W., Wu, J., Tan, C.C.: Friendship-based location privacy in mobile social networks. Int. J. Secur. Netw. 6(4), 226–236 (2011)

    Article  Google Scholar 

  5. Chen, Z., Huang, L., Yu, Z., Li, L., Yang, W.: Text information hiding detecting algorithm based on statistics. J. Chin. Comput. Syst. 29(12), 2199–2201 (2008)

    Google Scholar 

  6. Chen, Z., et al.: Linguistic steganography detection using statistical characteristics of correlations between words. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 224–235. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88961-8_16

    Chapter  Google Scholar 

  7. Chen, Z.: Research on analysis and design of linguistic steganography. Ph.D. thesis, University of Science and Technology of China (2009)

    Google Scholar 

  8. Goldreich, O.: Foundations of Cryptography: Volume II, Basic Applications. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  9. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  Google Scholar 

  10. Jiang, W., Murugesan, M., Clifton, C., Si, L.: Similar document detection with limited information disclosure. In: Proceedings of 24th IEEE ICDE, pp. 735–743 (2008)

    Google Scholar 

  11. Li, X., Zhu, Y., Wang, J.: Efficient encrypted data comparison through a hybrid method. J. Inf. Sci. Eng. 33(4), 953–964 (2017)

    MathSciNet  Google Scholar 

  12. Murugesan, M., Jiang, W., Clifton, C., Si, L., Vaidya, J.: Efficient privacy-preserving similar document detection. VLDB J. 19(4), 457–475 (2010)

    Article  Google Scholar 

  13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  14. Taskiran, C., Topkara, U., Topkara, M., Delp, E.: Attacks on lexical natural language steganography systems. Proc. SPIE 6072, 97–105 (2006)

    Google Scholar 

  15. Zhao, Y., Li, W., Lu, S.: Navigation-driven handoff minimization in wireless networks. J. Netw. Comput. Appl. 74, 11–20 (2016)

    Article  Google Scholar 

  16. Zhou, J., Niu, X., Yang, Y.: Research on the detecting algorithm of text document information hiding. J. Commun. 25(12), 97–101 (2004)

    Google Scholar 

  17. Zhou, L., Zhu, Y., Castiglione, A.: Efficient k-NN query over encrypted data in cloud with limited key-disclosure and offline data owner. Comput. Secur. 69, 84–96 (2017)

    Article  Google Scholar 

  18. Zhou, L., Zhu, Y., Choo, K.K.R.: Efficiently and securely harnessing cloud to solve linear regression and other matrix operations. Future Gen. Comput. Syst. 81, 404–413 (2018)

    Article  Google Scholar 

  19. Zhu, Y., Huang, L., Yang, W.: Relation of PPAtMP and scalar product protocol and their applications. In: IEEE Symposium on Computers and Communications (ISCC), pp. 184–189 (2010)

    Google Scholar 

  20. Zhu, Y., Huang, Z., Takagi, T.: Secure and controllable k-NN query over encrypted cloud data with key confidentiality. J. Parallel Distrib. Comput. 89, 1–12 (2016)

    Article  Google Scholar 

  21. Zhu, Y., Li, X., Wang, J., Liu, Y., Qu, Z.: Practical secure naïve bayesian classification over encrypted big data in cloud. Int. J. Found. Comput. Sci. 28(06), 683–703 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Science and Technology Project of State Grid Sichuan Electric Power Company (No. 521997170017 and No. 52199717001P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linghao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Wang, S., Gan, W., Tang, C., Zhang, J., Liang, H. (2018). SLIDE: An Efficient Secure Linguistic Steganography Detection Protocol. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11065. Springer, Cham. https://doi.org/10.1007/978-3-030-00012-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00012-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00011-0

  • Online ISBN: 978-3-030-00012-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics