Skip to main content

Efficient Multiparty Quantum Secret Sharing Scheme in High-Dimensional System

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11065))

Included in the following conference series:

Abstract

Quantum secret sharing (QSS) is an important component of quantum cryptograph. The original QSS scheme was proposed based on entangled GHZ states. But a drawback of the scheme is that only half of the quantum resource is effective, and the other half has to be discarded. To enhance the efficiency of the scheme, we propose an efficient multiparty QSS scheme and generalized it in high-dimensional system. By using a measurement-delay strategy on the dealer’s side, the efficiency of the improved QSS schemes can be raised to 100%, rather than 50% or \(\frac{1}{d}\) in previous schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  Google Scholar 

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

    Google Scholar 

  4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  Google Scholar 

  6. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  Google Scholar 

  7. Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92(5) (2004). https://doi.org/10.1103/PhysRevLett.92.057901

  8. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18) (2002). https://doi.org/10.1103/PhysRevLett.89.187902

  9. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4) (2003). https://doi.org/10.1103/PhysRevA.68.042317

  10. Gong, L.H., Liu, Y., Zhou, N.R.: Novel quantum virtual private network scheme for PON via quantum secure direct communication. Int. J. Theor. Phys. 52(9), 3260–3268 (2013)

    Article  MathSciNet  Google Scholar 

  11. Gottesman, D., Chuang, I.: Quantum digital signatures, arXiv (2001). arXiv:quant-ph/0105032

  12. Wang, M.M., Chen, X.B., Yang, Y.X.: A blind quantum signature protocol using the GHZ states. Sci. China Phys. Mech. Astron. 56(9), 1636 (2013)

    Article  Google Scholar 

  13. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86(25), 5807 (2001)

    Article  Google Scholar 

  14. Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large payload. Opt. Commun. 283(23), 4782–4786 (2010)

    Article  Google Scholar 

  15. Blakley, G.R.: Safeguarding cryptographic key. In: Proceedings of the 1979 AFIPS National Computer Conference, pp. 313–317, AFIPS Press, Montvale (1979)

    Google Scholar 

  16. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612 (1979)

    Article  MathSciNet  Google Scholar 

  17. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MathSciNet  Google Scholar 

  18. Wang, M.M., Chen, X.B., Chen, J.G., Yang, Y.X.: Quantum state sharing of arbitrary known multi-qubit and multi-qudit states. Int. J. Quantum Inf. 12(03) (2014). https://doi.org/10.1142/S0219749914500142

  19. Wang, M.M., Chen, X.B., Yang, Y.X.: Comment on “high-dimensional deterministic multiparty quantum secret sharing without unitary operations.”. Quantum Inf. Process. 12(2), 785–792 (2013)

    Article  MathSciNet  Google Scholar 

  20. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  MathSciNet  Google Scholar 

  21. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4) (2005). https://doi.org/10.1103/PhysRevA.71.044301

  22. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  Google Scholar 

  23. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4) (2000). https://doi.org/10.1103/PhysRevA.61.042311

  24. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17) (2004). https://doi.org/10.1103/PhysRevLett.92.177903

  25. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5) (2004). https://doi.org/10.1103/PhysRevA.69.052307

  26. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 78, 12344–12348 (2008)

    Article  Google Scholar 

  27. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191(2), 363–381 (1989)

    Article  MathSciNet  Google Scholar 

  28. Pittenger, A.O., Rubin, M.H.: Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra Appl. 390, 255–278 (2004)

    Article  MathSciNet  Google Scholar 

  29. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  Google Scholar 

  30. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzcaronek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76(6) (2007). https://doi.org/10.1103/PhysRevA.76.062324

  31. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4) (2001). https://doi.org/10.1103/PhysRevA.63.042301

  32. Chen, Y.A., et al.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95(20) (2005). https://doi.org/10.1103/PhysRevLett.95.200502

  33. Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nature Photonics 3(12), 706–714 (2009)

    Article  Google Scholar 

  34. Dai, H.N., et al.: Holographic storage of biphoton entanglement. Phys. Rev. Lett. 108(21) (2012). https://doi.org/10.1103/PhysRevLett.108.210501

Download references

Acknowledgments

This project was supported by NSFC (Grant Nos. 61601358, 61373131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, MM., Tian, LT., Qu, ZG. (2018). Efficient Multiparty Quantum Secret Sharing Scheme in High-Dimensional System. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11065. Springer, Cham. https://doi.org/10.1007/978-3-030-00012-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00012-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00011-0

  • Online ISBN: 978-3-030-00012-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics