Skip to main content

Error Tolerant ASCA on FPGA

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11065))

Included in the following conference series:

  • 2513 Accesses

Abstract

Algebraic Side-Channel Attack (ASCA) is a side-channel attack that models the cryptographic algorithm and side-channel leakage from the system as a set of equations, then solves for the secret key. Unlike pure side-channel attacks, ASCA has low data complexity and can succeed in unknown plaintext/ciphertext scenarios. However, past research on ASCA has been done on either 8-bit microcontroller data or simulated data. In this paper, we explore the application and feasibility of error tolerant ASCA on different platforms, such as field-programmable gate array (FPGA) and examines the error model of Hamming weights in terms of success of the attack. FPGA runs faster and is more difficult for encryption power trace to be isolated so it presents more of a challenge for the attacker. Since FPGA is as susceptible to ASCA as 8-bit micro-controllers, the attack could have widespread implications since it may be applicable to other hardware platforms as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barenghi, A., Pelosi, G., Teglia, Y.: Improving first order differential power attacks through digital signal processing. In: Proceedings of the 3rd International Conference on Security of Information and Networks, SIN 2010, pp. 124–133. ACM, New York (2010). https://doi.org/10.1145/1854099.1854126

  2. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

    Book  MATH  Google Scholar 

  3. Fei, H., Daheng, G.: Two kinds of correlation analysis method attack on implementations of advanced encryption standard software running inside STC89C52 microprocessor. In: 2016 2nd IEEE International Conference on Computer and Communications, ICCC, pp. 1265–1269, October 2016

    Google Scholar 

  4. Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 291–312. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_12

    Chapter  Google Scholar 

  5. Jayasinghe, D., Ragel, R., Ambrose, J.A., Ignjatovic, A., Parameswaran, S.: Advanced modes in AES: are they safe from power analysis based side channel attacks? In: 2014 IEEE 32nd International Conference on Computer Design, ICCD, pp. 173–180, October 2014

    Google Scholar 

  6. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25. http://dl.acm.org/citation.cfm?id=646764.703989

    Chapter  Google Scholar 

  7. Lu, Y., O’Neill, M.P., McCanny, J.V.: FPGA implementation and analysis of random delay insertion countermeasure against DPA. In: 2008 International Conference on Field-Programmable Technology, pp. 201–208, December 2008

    Google Scholar 

  8. Luo, C., Fei, Y., Ding, A.A.: Side-channel power analysis of XTS-AES. In: Design, Automation Test in Europe Conference Exhibition, DATE, pp. 1330–1335, March 2017

    Google Scholar 

  9. Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In: Milano, M. (ed.) CP 2012. LNCS, pp. 527–543. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_39

    Chapter  Google Scholar 

  10. Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann, J.: Improved algebraic side-channel attack on AES. J. Cryptograph. Eng. 3(3), 139–156 (2013). https://doi.org/10.1007/s13389-013-0059-1

    Article  Google Scholar 

  11. Mpalane, K., Gasela, N., Esiefarienrhe, B.M., Tsague, H.D.: Vulnerability of advanced encryption standard algorithm to differential power analysis attacks implemented on ATmega-128 microcontroller. In: 2016 Third International Conference on Artificial Intelligence and Pattern Recognition, AIPR, pp. 1–5, September 2016

    Google Scholar 

  12. Oren, Y., Weisse, O., Wool, A.: Practical template-algebraic side channel attacks with extremely low data complexity. In: Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, HASP 2013, pp. 7:1–7:8. ACM, New York (2013). https://doi.org/10.1145/2487726.2487733

  13. Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an ASIC AES implementation. In: 2004 Proceedings of the International Conference on Information Technology: Coding and Computing, ITCC 2004, vol. 2, pp. 546–552, April 2004

    Google Scholar 

  14. Örs, S.B., Oswald, E., Preneel, B.: Power-analysis attacks on an FPGA – first experimental results. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 35–50. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6_4

    Chapter  Google Scholar 

  15. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_29

    Chapter  Google Scholar 

  16. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_8

    Chapter  Google Scholar 

  17. Standaert, F.-X., Mace, F., Peeters, E., Quisquater, J.-J.: Updates on the security of FPGAs against power analysis attacks. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 335–346. Springer, Heidelberg (2006). https://doi.org/10.1007/11802839_42

    Chapter  Google Scholar 

  18. Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Samyde, D., Quisquater, J.-J.: Power analysis of FPGAs: how practical is the attack? In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 701–710. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45234-8_68

    Chapter  Google Scholar 

  19. Standaert, F.-X., Örs, S.B., Preneel, B.: Power analysis of an FPGA implementation of Rijndael: is pipelining a DPA countermeasure? In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 30–44. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_3

    Chapter  Google Scholar 

  20. Standaert, F.-X., Örs, S.B., Quisquater, J.-J., Preneel, B.: Power analysis attacks against FPGA implementations of the DES. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 84–94. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30117-2_11

    Chapter  Google Scholar 

  21. Standaert, O.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power analysis attacks against field programmable gate arrays. Proc. IEEE 94(2), 383–394 (2006)

    Article  Google Scholar 

  22. Zhao, X., et al.: MDASCA: an enhanced algebraic side-channel attack for error tolerance and new leakage model exploitation. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 231–248. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chujiao Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, C., Chandy, J. (2018). Error Tolerant ASCA on FPGA. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11065. Springer, Cham. https://doi.org/10.1007/978-3-030-00012-7_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00012-7_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00011-0

  • Online ISBN: 978-3-030-00012-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics