Skip to main content

Multi-class Imbalanced Learning with One-Versus-One Decomposition: An Empirical Study

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11065))

Included in the following conference series:

Abstract

In supervised learning, the underlying skewed distribution of multiple classes poses extreme difficulties for learning good models. A common scheme to deal with the multi-class imbalanced problem is to decompose an original dataset into several binary-class subsets and incorporate some imbalanced learning techniques. This paper presents our empirical study on the state-of-the-art multi-class imbalanced learning algorithms which are based on One-versus-One (OVO) decomposition. We implemented six algorithms in literature, including SMOTEBagging, UnderBagging, OVO plus OVA, OVO plus SMOTE, One-Against-Higher-Order, and DynamicOVO, and evaluate their performance in terms of multi-class Area Under the ROC (MAUC) on eighteen datasets with different characteristics. Experimental results show that the OVO plus SMOTE algorithm is superior to other algorithms and it is quite stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, Q., Wu, X.D.: 10 challenging problems in data mining research. Int. J. Inf. Technol. Decis. Mak. 5(04), 597–604 (2006)

    Article  Google Scholar 

  2. He, H.B., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  3. Zhou, Z.H., Liu, X.Y.: On multi-class cost-sensitive learning. Nat. Conf. Artif. Intell. 26(3), 567–572 (2006)

    MathSciNet  Google Scholar 

  4. Anand, R., Mehrotra, K., Mohan, C.K., Ranka, S.: Efficient classification for multiclass problems using modular neural networks. IEEE Trans. Neural Netw. 6(1), 117–124 (1995)

    Article  Google Scholar 

  5. Fernández, A., López, V., Galar, M., Del Jesus, M.J., Herrera, F.: Analysing the classification of imbalanced data-sets with multiple classes: binarization techniques and ad-hoc approaches. Knowl.-Based Syst. 42(2), 97–110 (2013)

    Article  Google Scholar 

  6. Galar, M., Ndez, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  7. Galar, M., Fernández, A., Ndez, A., Barrenechea, E., Bustince, H., Herrera, F.: Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers. Pattern Recogn. 46(12), 3412–3424 (2013)

    Article  Google Scholar 

  8. Lorena, A.C., Carvalho, A.C., Gama, J.M.: A review on the combination of binary classifiers in multi-class problems. Artif. Intell. Rev. 30(1–4), 19–37 (2008)

    Article  Google Scholar 

  9. Fernández, A., del Jesus, M.J., Herrera, F.: Multi-class imbalanced data-sets with linguistic fuzzy rule based classification systems based on pairwise learning. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 89–98. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_10

    Chapter  Google Scholar 

  10. Krawczyk, B.: Combining one-vs-one decomposition and ensemble learning for multi-class imbalanced data. In: Burduk, R., Jackowski, K., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Proceedings of the 9th International Conference on Computer Recognition Systems CORES 2015. AISC, vol. 403, pp. 27–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26227-7_3

    Chapter  Google Scholar 

  11. Ghanem, A.S., Venkatesh, S., West, G.: Multi-class pattern classification in imbalanced data. In: IEEE 2010 International Conference on Pattern Recognition, pp. 2881–2884 (2010)

    Google Scholar 

  12. Murphey, Y.L., Wang, H., Ou, G., Feldkamp, L.A.: OAHO: an effective algorithm for multi-class learning from imbalanced data. In: IEEE 2007 International Joint Conference on Neural Networks, pp. 406–411 (2007)

    Google Scholar 

  13. Tan, A.C., Gilbert, D., Deville, Y.: Multi-class protein fold classification using a new ensemble machine learning approach. Genome Inf. 14, 206–217 (2011)

    Google Scholar 

  14. Vluymans, S., Fernández, A., Saeys, Y., Cornelis, C., Herrera, F.: Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach. Knowl. Inf. Syst. 1, 1–30 (2017)

    Google Scholar 

  15. Cerf, L., Gay, D., Selmaoui-Folcher, N., Milleux, B., Boulicaut, J.F.: Editorial: parameter-free classification in multi-class imbalanced data sets. Data Knowl. Eng. 87(9), 109–129 (2013)

    Article  Google Scholar 

  16. Zhang, Z., Krawczyk, B., Garcìa, S., Rosales-Pérez, A., Herrera, F.: Empowering one-vs-one decomposition with ensemble learning for multi-class imbalanced data. Knowl. Based Syst. 106(C), 251–263 (2016)

    Article  Google Scholar 

  17. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over–sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  18. Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble models. In: IEEE 2009 Symposium on Computational Intelligence and Data Mining, vol. 1, no. 5, pp. 324–331 (2009)

    Google Scholar 

  19. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern.-Part C 42(4), 463–484 (2012)

    Article  Google Scholar 

  20. Garcia-Pedrajas, N., Ortiz-Boyer, D.: Improving multi-class pattern recognition by the combination of two strategies. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 1001–1006 (2006)

    Article  Google Scholar 

  21. Martino, M.D., Fernández, A., Iturralde, P.: Novel classifier scheme for imbalanced problems. Pattern Recogn. Lett. 34(10), 1146–1151 (2013)

    Article  Google Scholar 

  22. Hand, D.J., Till, R.J.: A simple generalisation of the area under the roc curve for multiple class classification problems. Mach. Learn. 45(2), 171–186 (2001)

    Article  Google Scholar 

  23. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. rtif. Intell. 5(4), 1–12 (2016)

    Google Scholar 

Download references

Acknowledgment

This research has been supported by the National Natural Science Foundation of China under grant 61603186, the Natural Science Foundation of Jiangsu Province, China, under grant BK20160843, the China Postdoctoral Science Foundation under grants 2017T100370 and 2016M590457, the Postdoctoral Science Foundation of Jiangsu Province, China, under grant 1601199C, the Science Foundation (for Youth) of the Science and Technology Commission of the Central Military Commission (CMC), the national key research and development program under grant 2016YFE0108000, the CERNET next generation internet technology innovation project under grant NGII20160122, the project of ZTE cooperation research under grant 2016ZTE04-11, and Jiangsu Province Key Research and Development Program under grants BE2017739 and BE2017100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianmu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Y., Zhang, J., Yan, H., Li, Q. (2018). Multi-class Imbalanced Learning with One-Versus-One Decomposition: An Empirical Study. In: Sun, X., Pan, Z., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2018. Lecture Notes in Computer Science(), vol 11065. Springer, Cham. https://doi.org/10.1007/978-3-030-00012-7_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00012-7_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00011-0

  • Online ISBN: 978-3-030-00012-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics