Skip to main content

Temporal DNA Barcodes: A Time-Based Approach for Single-Molecule Imaging

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11145))

Included in the following conference series:

Abstract

In the past decade, single-molecule imaging has opened new opportunities to understand reaction kinetics of molecular systems. DNA-PAINT uses transient binding of DNA strands to perform super-resolution fluorescence imaging. An interesting challenge in DNA nanoscience and related fields is the unique identification of single-molecules. While wavelength multiplexing (using fluorescent dyes of different colors) can be used to increase the number of distinguishable targets, the resultant total number of targets is still limited by the number of dyes with non-overlapping spectra. In this work, we introduce the use of time-domain to develop a DNA-based reporting framework for unique identification of single-molecules. These fluorescent DNA devices undergo a series of conformational transformations that result in (unique) time-changing intensity signals. We define this stochastic temporal intensity trace as the device’s temporal barcode since it can uniquely identify the corresponding DNA device if the collection time is long enough. Our barcodes work with as few as one dye making them easy to design, extremely low-cost, and greatly simplifying the hardware setup. In addition, by adding multiple dyes, we can create a much larger family of uniquely identifiable reporter molecules. Finally, our devices are designed to follow the principle of transient binding and can be imaged using total internal reflection fluorescence (TIRF) microscopes so they are not susceptible to photo-bleaching, allowing us to monitor their activity for extended time periods. We model our devices using continuous-time Markov chains (CTMCs) and simulate their behavior using a stochastic simulation algorithm (SSA). These temporal barcodes are later analyzed and classified in their parameter space. The results obtained from our simulation experiments can provide crucial insights for collecting experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braeckmans, K., De Smedt, S.C., Roelant, C., Leblans, M., Pauwels, R., Demeester, J.: Encoding microcarriers by spatial selective photobleaching. Nat. Mater. 2(3), 169 (2003)

    Article  Google Scholar 

  2. Bui, H., Shah, S., Mokhtar, R., Song, T., Garg, S., Reif, J.: Localized DNA hybridization chain reactions on DNA origami. ACS Nano 12(2), 1146–1155 (2018)

    Article  Google Scholar 

  3. Chatterjee, G., Dalchau, N., Muscat, R.A., Phillips, A., Seelig, G.: A spatially localized architecture for fast and modular DNA computing. Nat. Nanotechnol. 12(9), 920 (2017)

    Article  Google Scholar 

  4. Dejneka, M.J., et al.: Rare earth-doped glass microbarcodes. Proc. Natl. Acad. Sci. 100(2), 389–393 (2003)

    Article  Google Scholar 

  5. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)

    Article  Google Scholar 

  6. Eshra, A., Shah, S., Reif, J.: DNA hairpin gate: a renewable dna seesaw motif using hairpins. arXiv preprint arXiv:1704.06371 (2017)

  7. Fu, D., Shah, S., Song, T., Reif, J.: DNA-based analog computing. In: Braman, J.C. (ed.) Synthetic Biology. MMB, vol. 1772, pp. 411–417. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7795-6_23

    Chapter  Google Scholar 

  8. Garg, S., Shah, S., Bui, H., Song, T., Mokhtar, R., Reif, J.: Small 14, 1801470 (2018). https://doi.org/10.1002/smll.201801470

    Article  Google Scholar 

  9. Geiss, G.K., et al.: Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 26(3), 317 (2008)

    Article  Google Scholar 

  10. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

    Article  Google Scholar 

  11. Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., Lieber, C.M.: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617 (2002)

    Article  Google Scholar 

  12. Johnson-Buck, A., Shih, W.M.: Single-molecule clocks controlled by serial chemical reactions. Nano Lett. 17(12), 7940–7944 (2017)

    Article  Google Scholar 

  13. Joshi, A., Kaur, R.: A review: comparative study of various clustering techniques in data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(3), 55–57 (2013)

    Google Scholar 

  14. Jungmann, R., Avendaño, M.S., Woehrstein, J.B., Dai, M., Shih, W.M., Yin, P.: Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat. Methods 11(3), 313 (2014)

    Article  Google Scholar 

  15. Jungmann, R., Steinhauer, C., Scheible, M., Kuzyk, A., Tinnefeld, P., Simmel, F.C.: Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10(11), 4756–4761 (2010)

    Article  Google Scholar 

  16. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)

    Article  Google Scholar 

  17. Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered DNA circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 132–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4_9

    Chapter  MATH  Google Scholar 

  18. Levsky, J.M., Shenoy, S.M., Pezo, R.C., Singer, R.H.: Single-cell gene expression profiling. Science 297(5582), 836–840 (2002)

    Article  Google Scholar 

  19. Li, Y., Cu, Y.T.H., Luo, D.: Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat. Biotechnol. 23(7), 885 (2005)

    Article  Google Scholar 

  20. Lin, C., et al.: Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4(10), 832 (2012)

    Article  Google Scholar 

  21. Lin, C., Liu, Y., Yan, H.: Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing. Nano Lett. 7(2), 507–512 (2007)

    Article  Google Scholar 

  22. Lu, Y., et al.: Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photon. 8(1), 32 (2014)

    Article  Google Scholar 

  23. Nicewarner-Pena, S.R., et al.: Submicrometer metallic barcodes. Science 294(5540), 137–141 (2001)

    Article  Google Scholar 

  24. Pregibon, D.C., Toner, M., Doyle, P.S.: Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315(5817), 1393–1396 (2007)

    Article  Google Scholar 

  25. Qian, L., Winfree, E.: Scaling up digital circuit computation with dna strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  26. Sahu, S., LaBean, T.H., Reif, J.H.: A DNA nanotransport device powered by polymerase \(\phi \)29. Nano Lett. 8(11), 3870–3878 (2008)

    Article  Google Scholar 

  27. Schmied, J.J., et al.: DNA origami-based standards for quantitative fluorescence microscopy. Nat. Protoc. 9(6), 1367 (2014)

    Article  Google Scholar 

  28. Schnitzbauer, J., Strauss, M.T., Schlichthaerle, T., Schueder, F., Jungmann, R.: Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12(6), 1198 (2017)

    Article  Google Scholar 

  29. Seeman, N.C.: Structural DNA nanotechnology. In: Rosenthal, S.J., Wright, D.W. (eds.) NanoBiotechnology Protocols, pp. 143–166. Springer, Heidelberg (2005). https://doi.org/10.1385/1-59259-901-X:143

    Chapter  Google Scholar 

  30. Shah, S., Dave, P., Gupta, M.K.: Computing real numbers using DNA self-assembly. arXiv preprint arXiv:1502.05552 (2015)

  31. Shah, S., Limbachiya, D., Gupta, M.K.: DNACloud: A potential tool for storing big data on DNA. arXiv preprint arXiv:1310.6992 (2013)

  32. Shang, L., et al.: Photonic crystal microbubbles as suspension barcodes. J. Am. Chem. Soc. 137(49), 15533–15539 (2015)

    Article  Google Scholar 

  33. Song, T., Garg, S., Mokhtar, R., Bui, H., Reif, J.: Design and analysis of compact DNA strand displacement circuits for analog computation using autocatalytic amplifiers. ACS Synt. Biol. 7(1), 46–53 (2017)

    Article  Google Scholar 

  34. Trivedi, K.S.: Probability & Statistics with Reliability Queuing and Computer Science Applications. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  35. Tsukanov, R., et al.: Detailed study of DNA hairpin dynamics using single-molecule fluorescence assisted by DNA origami. J. Phys. Chem. B 117(40), 11932–11942 (2013)

    Article  Google Scholar 

  36. Zhang, Y., et al.: Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136(13), 4893–4896 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalin Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shah, S., Reif, J. (2018). Temporal DNA Barcodes: A Time-Based Approach for Single-Molecule Imaging. In: Doty, D., Dietz, H. (eds) DNA Computing and Molecular Programming. DNA 2018. Lecture Notes in Computer Science(), vol 11145. Springer, Cham. https://doi.org/10.1007/978-3-030-00030-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00030-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00029-5

  • Online ISBN: 978-3-030-00030-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics