Skip to main content

Fusing First-Order Knowledge Compilation and the Lifted Junction Tree Algorithm

  • Conference paper
  • First Online:
KI 2018: Advances in Artificial Intelligence (KI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11117))

  • 1272 Accesses

Abstract

Standard approaches for inference in probabilistic formalisms with first-order constructs include lifted variable elimination (LVE) for single queries as well as first-order knowledge compilation (FOKC) based on weighted model counting. To handle multiple queries efficiently, the lifted junction tree algorithm (LJT) uses a first-order cluster representation of a model and LVE as a subroutine in its computations. For certain inputs, the implementation of LVE and, as a result, LJT ground parts of a model where FOKC runs without groundings. The purpose of this paper is to prepare LJT as a backbone for lifted query answering and to use any exact inference algorithm as subroutine. Fusing LJT and FOKC, by setting FOKC as a subroutine, allows us to compute answers faster than FOKC alone and LJT with LVE for certain inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries for scaling loopy belief propagation and relational training. Mach. Learn. 92(1), 91–132 (2013)

    Article  MathSciNet  Google Scholar 

  2. Apsel, U., Brafman, R.I.: Extended lifted inference with joint formulas. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011 (2011)

    Google Scholar 

  3. Bellodi, E., Lamma, E., Riguzzi, F., Costa, V.S., Zese, R.: Lifted variable elimination for probabilistic logic programming. Theory Pract. Logic Program. 14(4–5), 681–695 (2014)

    Article  Google Scholar 

  4. Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M., Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46073-4_3

    Chapter  Google Scholar 

  5. Braun, T., Möller, R.: Lifted most probable explanation. In: Chapman, P., Endres, D., Pernelle, N. (eds.) ICCS 2018. LNCS (LNAI), vol. 10872, pp. 39–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91379-7_4

    Chapter  Google Scholar 

  6. van den Broeck, G.: Lifted inference and learning in statistical relational models. Ph.D. thesis, KU Leuven (2013)

    Google Scholar 

  7. van den Broeck, G., Davis, J.: Conditioning in first-order knowledge compilation and lifted probabilistic inference. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1961–1967 (2012)

    Google Scholar 

  8. van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric graphical models. In: Proceedings of the 29th Conference on Artificial Intelligence, AAAI 2015, pp. 3599–3605 (2015)

    Google Scholar 

  9. van den Broeck, G., Taghipour, N., Meert, W., Davis, J., Raedt, L.D.: Lifted probabilistic inference by first-order knowledge compilation. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011 (2011)

    Google Scholar 

  10. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimination. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 2443–2449 (2007)

    Google Scholar 

  11. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting. Artif. Intell. 172(6–7), 772–799 (2008)

    Article  MathSciNet  Google Scholar 

  12. Choi, J., Amir, E., Hill, D.J.: Lifted inference for relational continuous models. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010, pp. 13–18 (2010)

    Google Scholar 

  13. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17(1), 229–264 (2002)

    Article  MathSciNet  Google Scholar 

  14. Das, M., Wu, Y., Khot, T., Kersting, K., Natarajan, S.: Scaling lifted probabilistic inference and learning via graph databases. In: Proceedings of the SIAM International Conference on Data Mining, pp. 738–746 (2016)

    Google Scholar 

  15. Gogate, V., Domingos, P.: Exploiting logical structure in lifted probabilistic inference. In: Working Note of the Workshop on Statistical Relational Artificial Intelligence at the 24th Conference on Artificial Intelligence, pp. 19–25 (2010)

    Google Scholar 

  16. Gogate, V., Domingos, P.: Probabilistic theorem proving. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011, pp. 256–265 (2011)

    Google Scholar 

  17. Kazemi, S.M., Poole, D.: Why is compiling lifted inference into a low-level language so effective? In: Statistical Relational AI Workshop, IJCAI 2016 (2016)

    Google Scholar 

  18. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Ser. B: Methodol. 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Milch, B., Zettelmoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted probabilistic inference with counting formulas. In: Proceedings of the 23rd Conference on Artificial Intelligence, AAAI 2008, pp. 1062–1068 (2008)

    Google Scholar 

  20. Poole, D.: First-order probabilistic inference. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI 2003 (2003)

    Google Scholar 

  21. Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic inference. J. Artif. Intell. 18, 263–313 (2003)

    Article  MathSciNet  Google Scholar 

  22. de Salvo Braz, R.: Lifted first-order probabilistic inference. Ph.D. thesis, University of Illinois at Urbana Champaign (2007)

    Google Scholar 

  23. Shenoy, P.P., Shafer, G.R.: Axioms for probability and belief-function propagation. Uncertain. Artif. Intell. 4(9), 169–198 (1990)

    Article  MathSciNet  Google Scholar 

  24. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of the 23rd Conference on Artificial Intelligence, AAAI 2008, pp. 1094–1099 (2008)

    Google Scholar 

  25. Taghipour, N., Davis, J.: Generalized counting for lifted variable elimination. In: Proceedings of the 2nd International Workshop on Statistical Relational AI, pp. 1–8 (2012)

    Google Scholar 

  26. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination: decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1), 393–439 (2013)

    Article  MathSciNet  Google Scholar 

  27. Vlasselaer, J., Meert, W., van den Broeck, G., Raedt, L.D.: Exploiting local and repeated structure in dynamic Baysian networks. Artif. Intell. 232, 43–53 (2016)

    Article  Google Scholar 

  28. Zhang, N.L., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp. 171–178 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, T., Möller, R. (2018). Fusing First-Order Knowledge Compilation and the Lifted Junction Tree Algorithm. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics