Skip to main content

Stochastic Temporal Logic Abstractions: Challenges and Opportunities

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11022))

  • 740 Accesses

Abstract

Reasoning about uncertainty is one of the fundamental challenges in the real-world deployment of many cyber-physical system applications. Several models for capturing environment uncertainty have been suggested in the past, and these typically are parametric models with either Markovian assumptions on the time-evolution of the system, or Gaussian assumptions on uncertainty. In this paper, we propose a framework for creating data-driven abstractions of the environment based on Stochastic Temporal Logics. Such logics allow combining the power of temporal logic-based absractions with powerful stochastic modeling techniques. Our framework allows constructing stochastic models using generalized master equations, which can be viewed as a nonparametric model capturing the dynamic evolution of the probabilities of system variables with time. Furthermore, we show how we can automatically infer temporal logic based abstractions from such a model. We give examples of applications for such a framework, and highlight some of the open problems and challenges in this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Master equations are commonly used tools in statistical physics to describe time-evolution of a system [5, 6, 20].

References

  1. Abate, A., D’Innocenzo, A., Benedetto, M.D.D.: Approximate abstractions of stochastic hybrid systems. IEEE Trans. Autom. Control 56(11), 2688–2694 (2011)

    Article  MathSciNet  Google Scholar 

  2. Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for robust satisfaction of signal temporal logic specifications. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6565–6570, December 2016

    Google Scholar 

  3. Arnold, A., Liu, Y., Abe., N.: Temporal causal modeling with graphical Granger methods. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (SIGKDD-07) (2007)

    Google Scholar 

  4. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis for probabilistic systems (extended abstract). In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 493–506. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3_38

    Chapter  Google Scholar 

  5. Balescu, R.: Statistical Dynamics: Matter Out of Equilibrium. World Scientific, Singapore (1997)

    Book  Google Scholar 

  6. Balescu, R.: Aspects of Anomalous Transport in Plasmas. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  7. Brázdil, T., et al.: Verification of Markov decision processes using learning algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

    Chapter  Google Scholar 

  8. Cardenas, A., et al.: Challenges for securing cyber physical systems. In: Workshop on Future Directions in Cyber-Physical Systems Security, vol. 5 (2009)

    Google Scholar 

  9. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19

    Chapter  Google Scholar 

  10. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comp. Sci. 410(42), 4262–4291 (2009)

    Article  MathSciNet  Google Scholar 

  11. Fu, J., Topcu, U.: Computational methods for stochastic control with metric interval temporal logic specifications. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp. 7440–7447. IEEE (2015)

    Google Scholar 

  12. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

    Article  Google Scholar 

  13. Hoxha, B., Abbas, H., Fainekos, G.: Benchmarks for temporal logic requirements for automotive systems. In: Frehse, G., Althoff, M. (eds.) ARCH14-15. 1st and 2nd International Workshop on Applied Verification for Continuous and Hybrid Systems. EPiC Series in Computing, vol. 34, pp. 25–30. EasyChair (2015)

    Google Scholar 

  14. Jha, S., Raman, V.: Automated synthesis of safe autonomous vehicle control under perception uncertainty. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 117–132. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0_10

    Chapter  Google Scholar 

  15. Jha, S., Raman, V., Sadigh, D., Seshia, S.A.: Safe autonomy under perception uncertainty using chance-constrained temporal logic. J. Autom. Reason. 60(1), 43–62 (2018)

    Article  MathSciNet  Google Scholar 

  16. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control verification benchmark. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, pp. 253–262. ACM (2014)

    Google Scholar 

  17. Julius, A.A., Pappas, G.J.: Approximations of stochastic hybrid systems. IEEE Trans. Autom. Control 54(6), 1193–1203 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kamgarpour, M., Ding, J., Summers, S., Abate, A., Lygeros, J., Tomlin, C.: Discrete time stochastic hybrid dynamical games: verification amp; controller synthesis. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 6122–6127, December 2011

    Google Scholar 

  19. Kapinski, J., et al.: ST-Lib: a library for specifying and classifying model behaviors. In: SAE Technical Paper. SAE (2016)

    Google Scholar 

  20. Klages, R., Radons, G., Radons, G., Sokolov, I.: Anomalous Transport: Foundations and Applications. Wiley, Hoboken (2008)

    Book  Google Scholar 

  21. Kramer, M.A., Kolaczyk, E.D., Kirsch, H.E.: Emergent network topology at seizure onset in humans. Epilepsy Res. 79(2), 173–186 (2008)

    Article  Google Scholar 

  22. Lahijanian, M., Andersson, S.B., Belta, C.: Control of Markov decision processes from PCTL specifications. In: Proceedings of the 2011 American Control Conference, pp. 311–316, June 2011

    Google Scholar 

  23. Li, J., Nuzzo, P., Sangiovanni-Vincentelli, A., Xi, Y., Li, D.: Stochastic contracts for cyber-physical system design under probabilistic requirements. In: ACM/IEEE International Conference on Formal Methods and Models for System Design (2017)

    Google Scholar 

  24. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  25. Pajic, M., Mangharam, R., Pappas, G.J., Sundaram, S.: Topological conditions for in-network stabilization of dynamical systems. IEEE J. Sel. Areas Commun. 31(4), 794–807 (2013). https://doi.org/10.1109/JSAC.2013.130415

    Article  Google Scholar 

  26. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNAI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88562-7_19

    Chapter  Google Scholar 

  27. Roehm, H., Gmehlich, R., Heinz, T., Oehlerking, J., Woehrle, M.: Industrial examples of formal specifications for test case generation. In: Workshop on Applied Verification for Continuous and Hybrid Systems, ARCH@CPSWeek 2015, pp. 80–88 (2015)

    Google Scholar 

  28. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal temporal logic. In: Robotics Science and Systems (2016)

    Google Scholar 

  29. Sundaram, S., Pajic, M., Hadjicostis, C., Mangharam, R., Pappas, G.: The wireless control network: monitoring for malicious behavior. In: 49th IEEE Conference on Decision and Control (CDC), pp. 5979–5984, December 2010. https://doi.org/10.1109/CDC.2010.5717166

  30. Sundaram, S., Revzen, S., Pappas, G.: A control-theoretic approach to disseminating values and overcoming malicious links in wireless networks. Automatica 48(11), 2894–2901 (2012)

    Article  MathSciNet  Google Scholar 

  31. Xue, Y., Bogdan, P.: Constructing compact causal mathematical models for complex dynamics. In: Proceedings of the 8th International Conference on Cyber-Physical Systems, pp. 97–107. ICCPS 2017 (2017)

    Google Scholar 

  32. Zhang, X., Wu, B., Lin, H.: Learning based supervisor synthesis of POMDP for PCTL specifications. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp. 7470–7475. IEEE (2015)

    Google Scholar 

Download references

Acknowledgement

This work was in part supported by The Defense Advanced Research Projects Agency and DARPA Young Faculty Award under grant numbers W911NF-17-1-0076 and N66001-17-1-4044, and the US National Science Foundation (NSF) under CAREER Award CPS-1453860. The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmoy V. Deshmukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deshmukh, J.V., Kyriakis, P., Bogdan, P. (2018). Stochastic Temporal Logic Abstractions: Challenges and Opportunities. In: Jansen, D., Prabhakar, P. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2018. Lecture Notes in Computer Science(), vol 11022. Springer, Cham. https://doi.org/10.1007/978-3-030-00151-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00151-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00150-6

  • Online ISBN: 978-3-030-00151-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics