Skip to main content

On Dispersable Book Embeddings

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

  • 574 Accesses

Abstract

In a dispersable book embedding, the vertices of a graph G are ordered along a line \(\ell \), called spine, and the edges of G are drawn at different half-planes bounded by \(\ell \), called pages, such that: (i) no two edges of the same page cross, and (ii) no two edges of the same page share a common endvertex. The minimum number of pages needed in a dispersable book embedding of G is called its dispersable book thickness, dbt(G). Graph G is called dispersable if \(dbt(G)\) equals the maximum degree of G, \(\varDelta (G)\) (note that \(dbt(G) \ge \varDelta (G)\) always holds).

Back in 1979, Bernhart and Kainen conjectured that every k-regular bipartite graph G is dispersable and showed that it holds for \(k \in \{1, 2\}\). In this paper, we disprove the conjecture for the cases \(k=3\) (with a computer-aided proof), and \(k=4\) (with a purely combinatorial proof). In particular, we show that the bipartite 3-regular Gray graph has dispersable book thickness four, while the bipartite 4-regular Folkman graph has dispersable book thickness five. On the positive side, we show that every 3-connected 3-regular bipartite planar graph is dispersable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \([\mathsf {{A_1}},\mathsf {{A_2}}]\) is the union of \([\mathsf {{A_1}},\mathsf {{B_1}}]\), \([\mathsf {{B_1}},\mathsf {{C_1}}]\), \([\mathsf {{C_1}},\mathsf {{C_2}}]\), \([\mathsf {{C_2}},\mathsf {{A_2}}]\). As in the last three there are \(\mathsf {{C}}\)’s connectors including \(\mathsf {ac}\in [\mathsf {{C_1}},\mathsf {{C_2}}]\), the second \(\mathsf {{A}}\)’s connector can be only in \([\mathsf {{A_1}},\mathsf {{B_1}}]\).

References

  1. Alam, J.M., Bekos, M.A., Gronemann, M., Kaufmann, M., Pupyrev, S.: On dispersable book embeddings. CoRR abs/1803.10030 (2018)

    Google Scholar 

  2. Barnette, D.W.: Conjecture 5. In: Tutte, W.T. (ed.) Recent Progress in Combinatorics, Proceedings of the Third Waterloo Conference on Combinatorics, pp. xiv+347. Academic Press, New York, London (1969)

    Google Scholar 

  3. Bekos, M.A., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings of 4-planar graphs. Algorithmica 75(1), 158–185 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bekos, M.A., Kaufmann, M., Zielke, C.: The book embedding problem from a SAT-Solving perspective. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 125–138. Springer, Cham (2015)

    Chapter  Google Scholar 

  5. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory, Ser. B 27(3), 320–331 (1979)

    Article  MathSciNet  Google Scholar 

  6. Blankenship, R.: Book embeddings of graphs. Ph.D. thesis, Louisiana State University (2003)

    Google Scholar 

  7. Bouwer, I.: On edge but not vertex transitive regular graphs. J. Comb. Theory, Ser. B 12(1), 32–40 (1972)

    Article  MathSciNet  Google Scholar 

  8. Chartrand, G., Geller, D.P.: On uniquely colorable planar graphs. J. Comb. Theory 6(3), 271–278 (1969)

    Article  MathSciNet  Google Scholar 

  9. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebraic Discret. Methods 8(1), 33–58 (1987)

    Article  MathSciNet  Google Scholar 

  10. Cornuéjols, G., Naddef, D., Pulleyblank, W.: Halin graphs and the travelling salesman problem. Math. Program. 26(3), 287–294 (1983)

    Article  MathSciNet  Google Scholar 

  11. Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. Discret. Comput. Geom. 37(4), 641–670 (2007)

    Article  MathSciNet  Google Scholar 

  12. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discret. Math. Theor. Comput. Sci. 6(2), 339–358 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Folkman, J.: Regular line-symmetric graphs. J. Comb. Theory 3(3), 215–232 (1967)

    Article  MathSciNet  Google Scholar 

  14. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm for planar graphs. Discret. Comput. Geom. 13, 459–468 (1995)

    Article  MathSciNet  Google Scholar 

  15. Gerbracht, E.: Eleven unit distance embeddings of the Heawood graph. CoRR abs/0912.5395 (2009)

    Google Scholar 

  16. Heath, L.S.: Embedding planar graphs in seven pages. In: FOCS, pp. 74–83. IEEE Computer Society (1984)

    Google Scholar 

  17. Hoske, D.: Book embedding with fixed page assignments. Bachelor thesis, Karlsruhe Institute for Technology (2012)

    Google Scholar 

  18. Kainen, P.C.: Crossing-free matchings in regular outerplane drawings. In: Knots in Washington XXIX. George Washington Univ., Washington, DC, USA (2009). http://faculty.georgetown.edu/kainen/circLayouts.pdf

  19. Kainen, P.C., Overbay, S.: Extension of a theorem of Whitney. Appl. Math. Lett. 20(7), 835–837 (2007)

    Article  MathSciNet  Google Scholar 

  20. Malitz, S.: Genus \(g\) graphs have pagenumber \(O(\sqrt{g})\). J. Algorithms 17(1), 85–109 (1994)

    Article  MathSciNet  Google Scholar 

  21. Malitz, S.: Graphs with E edges have pagenumber \(O(\sqrt{E})\). J. Algorithms 17(1), 71–84 (1994)

    Article  MathSciNet  Google Scholar 

  22. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. Elsevier, New York (1988)

    MATH  Google Scholar 

  23. Overbay, S.B.: Generalized book embeddings. Ph.D. thesis, Colorado State University (1998)

    Google Scholar 

  24. Steinberg, R.: The state of the three color problem. In: Gimbel, J., Kennedy, J.W., Quintas, L.V. (eds.) Quo Vadis, Graph Theory?. Elsevier, New York (1993). Ann. Discret. Math. 55, 211–248

    MATH  Google Scholar 

  25. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal planar graphs. Technical report TR-298, EECS Department, Princeton University (1982)

    Google Scholar 

  26. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

Our work is partially supported by DFG grant KA812/18-1. We would like to thank Prof. Paul Kainen for bringing this problem to our attention. We also thank Jessica Wolz for discussions on experimental aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Bekos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alam, J.M., Bekos, M.A., Gronemann, M., Kaufmann, M., Pupyrev, S. (2018). On Dispersable Book Embeddings. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics