Skip to main content

\(\forall \exists \mathbb {R}\)-Completeness and Area-Universality

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

Abstract

In the study of geometric problems, the complexity class \(\exists \mathbb {R}\) plays a crucial role since it exhibits a deep connection between purely geometric problems and real algebra. Sometimes \(\exists \mathbb {R}\) is referred to as the “real analogue” to the class NP. While NP is a class of computational problems that deals with existentially quantified boolean variables, \(\exists \mathbb {R}\) deals with existentially quantified real variables.

In analogy to \(\varPi _2^p\) and \(\varSigma _2^p\) in the famous polynomial hierarchy, we study the complexity classes \(\forall \exists \mathbb {R}\) and \(\exists \forall \mathbb {R}\) with real variables. Our main interest is focused on the Area Universality problem, where we are given a plane graph G, and ask if for each assignment of areas to the inner faces of G there is an area-realizing straight-line drawing of G. We conjecture that the problem Area Universality is \(\forall \exists \mathbb {R}\)-complete and support this conjecture by a series of partial results, where we prove \(\exists \mathbb {R}\)- and \(\forall \exists \mathbb {R}\)-completeness of variants of Area Universality. To do so, we also introduce first tools to study \(\forall \exists \mathbb {R}\). Finally, we present geometric problems as candidates for \(\forall \exists \mathbb {R}\)-complete problems. These problems have connections to the concepts of imprecision, robustness, and extendability.

A video presenting this paper is available at https://youtu.be/OQkACiNS66o. Proofs omitted due to space constraints can be found in the full version of the manuscript [6]

T. Miltzow—Partially supported by the ERC grant PARAMTIGHT: “Parameterized complexity and the search for tight complexity results”, no. 280152.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is \(\exists \mathbb{R}\)-complete. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM (2018)

    Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33099-2

    Book  MATH  Google Scholar 

  3. Biedl, T.C., Velázquez, L.E.R.: Drawing planar 3-trees with given face areas. Comput. Geom. 46(3), 276–285 (2013)

    Article  MathSciNet  Google Scholar 

  4. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-0701-6

    Book  MATH  Google Scholar 

  5. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1), 29–35 (1988)

    Article  MathSciNet  Google Scholar 

  6. Dobbins, M.G., Kleist, L., Miltzow, T., Rzążewski, P.: \(\forall \)\(\exists \)R-completeness and area-universality. CoRR, abs/1712.05142 (2017)

    Google Scholar 

  7. Dvořák, Z., Král’, D., Škrekovski, R.: Coloring face hypergraphs on surfaces. Eur. J. Comb. 26(1), 95–110 (2005)

    Article  MathSciNet  Google Scholar 

  8. Evans, W.S., et al.: Table cartogram. Comput. Geom. 68, 174–185 (2018)

    Article  MathSciNet  Google Scholar 

  9. Kleist, L.: Drawing planar graphs with prescribed face areas. J. Comput. Geom. 9(1), 290–311 (2018)

    MATH  Google Scholar 

  10. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Ber. Math.-Phys. Kl. Sächs. Akad. Wiss 78, 256–267 (1926)

    Google Scholar 

  11. Lubiw, A., Miltzow, T., Mondal, D.: The complexity of drawing a graph in a polygonal region. CoRR, abs/1802.06699 (2018). Accepted at Graph Drawing 2018 (GD 2018)

    Google Scholar 

  12. Matoušek, J.: Intersection graphs of segments and \(\exists \mathbb{R}\). CoRR, abs/1406.2636 (2014)

    Google Scholar 

  13. Mnev, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.) Topology and Geometry—Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0082792

    Chapter  Google Scholar 

  14. Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17286-1

    Book  MATH  Google Scholar 

  15. Ringel, G.: Equiareal graphs. In: Contemporary Methods in Graph Theory, pp. 503–505 (1990)

    Google Scholar 

  16. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017)

    Article  MathSciNet  Google Scholar 

  17. Thomassen, C.: Plane cubic graphs with prescribed face areas. Comb. Probab. Comput. 1, 371–381 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Kleist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobbins, M.G., Kleist, L., Miltzow, T., Rzążewski, P. (2018). \(\forall \exists \mathbb {R}\)-Completeness and Area-Universality. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics