Skip to main content

Equiangular Polygon Contact Representations

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11159))

Included in the following conference series:

  • 645 Accesses

Abstract

Planar graphs are known to have contact representations of various types. The most prominent example is Koebe’s ‘kissing coins theorem’. Its rediscovery by Thurston lead to effective versions of the Riemann Mapping Theorem and motivated Schramm’s Monster Packing Theorem. Monster Packing implies the existence of contact representations of planar triangulations where each vertex v is represented by a homothetic copy of some smooth strictly-convex prototype \(P_v\).

With this work we aim at computable approximations of Schramm representations. For fixed K approximate \(P_v\) by an equiangular K-gon \(Q_v\) with horizontal basis. From Schramm’s work it follows that the given triangulation also has a contact representation with homothetic copies of these K-gons. Our approach starts by guessing a , i.e., the combinatorial structure of a contact representation. From the combinatorial data, we build a system of linear equations whose variables correspond to lengths of boundary segments of the K-gons. If the system has a non-negative solution, this yields the intended contact representation. If the solution of the system contains negative variables, these can be used as sign-posts indicating how to change the K-contact-structure for another try.

In the case \(K=3\) the K-contact-structures are Schnyder woods, in the case \(K=4\) they are transversal structures. As in these cases, for \({K \ge 5}\) the K-contact-structures of a fixed graph are in bijection to certain integral flows, and can be viewed as elements of a distributive lattice.

The procedure has been implemented, it computes the solution with few iterations. The experiments involved graphs with up to one hundred vertices.

A full version of the paper is available at http://page.math.tu-berlin.de/~felsner/Paper/kgons.pdf.

S. Felsner and H. Schrezenmaier—Partially supported by DFG grant FE-340/11-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Visualizations of some examples can be found at https://www3.math.tu-berlin.de/diskremath/research/kgon-representations/index.html.

References

  1. Bowers, P.L.: Circle packing: a personal reminiscence. In: Pitici, M. (ed.) The Best Writing on Mathematics 2010, pp. 330–345. Princeton University Press, Princeton (2010)

    Google Scholar 

  2. Brooks, R.L., Smith, C., Stone, A.H., Tutte, W.T.: The dissection of rectangles into squares. Duke Math. J. 7(1), 312–340 (1940)

    Article  MathSciNet  Google Scholar 

  3. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Trans. Algorithms 4, 28 (2008). Article no 8

    MathSciNet  Google Scholar 

  4. de Fraysseix, H., de Mendez, P.O.: On topological aspects of orientations. Discret. Math. 229(1), 57–72 (2001)

    Article  MathSciNet  Google Scholar 

  5. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Comb. Probab. Comput. 3, 233–246 (1994)

    Article  MathSciNet  Google Scholar 

  6. Felsner, S.: Lattice structures from planar graphs. Electron. J. Comb. 11(1), R15 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Felsner, S.: Triangle contact representations. In: Midsummer Combinatorial Workshop, Praha (2009)

    Google Scholar 

  8. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_12

    Chapter  Google Scholar 

  9. Felsner, S., Knauer, K.: ULD-lattices and \(\Delta \)-bonds. Comb. Probab. Comput. 18(5), 707–724 (2009)

    Article  MathSciNet  Google Scholar 

  10. Felsner, S., Schrezenmaier, H., Steiner, R.: Pentagon contact representations. In: Proceedings of the Eurocomb, pp. 421–427 (2017)

    Google Scholar 

  11. Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. In: Proceedings of the Graph Drawing, pp. 262–273 (2011)

    Google Scholar 

  12. Picchetti, T.: Finding a square dual of a graph (2011)

    Google Scholar 

  13. Rucker, J.: Kontaktdarstellungen von planaren Graphen. Diplomarbeit, Technische Universität Berlin (2011)

    Google Scholar 

  14. Schramm, O.: Combinatorically prescribed packings and applications to conformal and quasiconformal maps. Modified version of Ph.D. thesis from 1990. arXiv.org/0709.0710v1

  15. Schramm, O.: Square tilings with prescribed combinatorics. Isr. J. Math. 84(1–2), 97–118 (1993)

    Article  MathSciNet  Google Scholar 

  16. Schrezenmaier, H.: Zur Berechnung von Kontaktdarstellungen. Masterarbeit, Technische Universität Berlin (2016)

    Google Scholar 

  17. Schrezenmaier, H.: Homothetic triangle contact representations. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 425–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_32

    Chapter  Google Scholar 

  18. Steiner, R.: Existenz und Konstruktion von Dreieckszerlegungen triangulierter Graphen und Schnyder woods. Bachelorarbeit, FernUniversität in Hagen (2016)

    Google Scholar 

  19. Stephenson, K.: Introduction to Circle Packing. The Theory of Discrete Analytic Functions. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

We want to thank Manfred Scheucher for supporting us with the implementation of the heuristic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Schrezenmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Felsner, S., Schrezenmaier, H., Steiner, R. (2018). Equiangular Polygon Contact Representations. In: Brandstädt, A., Köhler, E., Meer, K. (eds) Graph-Theoretic Concepts in Computer Science. WG 2018. Lecture Notes in Computer Science(), vol 11159. Springer, Cham. https://doi.org/10.1007/978-3-030-00256-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00256-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00255-8

  • Online ISBN: 978-3-030-00256-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics