Abstract
The existing membrane clustering algorithms may fail to handle the data sets with non-spherical cluster boundaries. To overcome the shortcoming, this paper introduces kernel methods into membrane clustering algorithms and proposes a kernel-based membrane clustering algorithm, KMCA. By using non-linear kernel function, samples in original data space are mapped to data points in a high-dimension feature space, and the data points are clustered by membrane clustering algorithms. Therefore, a data clustering problem is formalized as a kernel clustering problem. In KMCA algorithm, a tissue-like P system is designed to determine the optimal cluster centers for the kernel clustering problem. Due to the use of non-linear kernel function, the proposed KMCA algorithm can well deal with the data sets with non-spherical cluster boundaries. The proposed KMCA algorithm is evaluated on nine benchmark data sets and is compared with four existing clustering algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
Pǎun, Gh.: Membrane Computing: An Introduction. Springer, Berlin (2002). https://doi.org/10.1007/978-3-642-56196-2
Cavaliere, M.: Evolution–communication P systems. In: Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36490-0_10
Freund, R., Pǎun, Gh., Pérez-Jiménez, M.J.: Tissue-like P systems with channel-states. Theor. Comput. Sci. 330(1), 101–116 (2005)
Bernardini, F., Gheorghe, M.: Population P systems. J. Univ. Comput. Sci. 10(5), 509–539 (2004)
Pǎun, Gh., Pǎun, R.: Membrane computing and economics: numerical P systems. Fundam. Inform. 73(1–2), 213–227 (2006)
Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, G.: Variants of P colonies with very simple cell structure. Int. J. Comput. Commun. Control IV(3), 224–233 (2009)
Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundam. Inform. 71, 279–308 (2006)
Song, T., Pan, L., Păun, Gh.: Spiking neural P systems with rules on synapses. Theor. Comput. Sci. 529, 82–95 (2014)
Peng, H., et al.: Competitive spiking neural P systems with rules on synapses. IEEE Trans. NanoBiosci. 16(8), 888–895 (2018)
Peng, H., et al.: Spiking neural P systems with multiple channels. Neural Netw. 95, 66–71 (2017)
Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile robots. Inf. Sci. 187, 33–51 (2012)
Wang, X., et al.: Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integr. Comput.-Aided Eng. 23(1), 15–30 (2016)
Zhang, G., Gheorghe, M., Li, Y.: A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Natural Comput. 11(4), 701–717 (2012)
Díaz-Pernil, D., Berciano, A., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: Segmenting images with gradient-based edge detection using membrane computing. Pattern Recogn. Lett. 34(8), 846–855 (2013)
Peng, H., Wang, J., Pérez-Jiménez, M.J.: Optimal multi-level thresholding with membrane computing. Digit. Sig. Process. 37, 53–64 (2015)
Alsalibi, B., Venkat, I., Al-Betar, M.A.: A membrane-inspired bat algorithm to recognize faces in unconstrained scenarios. Eng. Appl. Artif. Intell. 64, 242–260 (2017)
Zhang, G., Liu, C., Rong, H.: Analyzing radar emitter signals with membrane algorithms. Math. Comput. Model. 52(11–12), 1997–2010 (2010)
Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: The framework of P systems applied to solve optimal watermarking problem. Sig. Process. 101, 256–265 (2014)
Wang, J., Shi, P., Peng, H.: Membrane computing model for IIR filter design. Inf. Sci. 329, 164–176 (2016)
Xiong, G., Shi, D., Zhu, L., Duan, X.: A new approach to fault diagnosis of power systems using fuzzy reasoning spiking neural P systems. Math. Problems Eng. 2013(1), 211–244 (2013)
Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking neural P system. IEEE Trans. Fuzzy Syst. 21(2), 209–220 (2013)
Wang, T., et al.: Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 30(3), 1182–1194 (2015)
Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Fault diagnosis of power systems using fuzzy tissue-like P systems. Integr. Comput.-Aided Eng. 24, 401–411 (2017)
Peng, H.: Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Trans. Smart Grid 9(5), 4777–4784 (2018)
Gheorghe, M., Manca, V., Romero-Campero, F.J.: Deterministic and stochastic P systems for modelling cellular processes. Natural Comput. 9(2), 457–473 (2010)
García-Quismondo, M., Levin, M., Lobo-Fernández, D.: Modeling regenerative processes with membrane computing. Inf. Sci. 381, 229–249 (2017)
García-Quismondo, M., Nisbet, I.C.T., Mostello, C.S., Reed, M.J.: Modeling population dynamics of roseate terns (sterna dougallii) in the Northwest Atlantic Ocean. Ecol. Model. 68, 298–311 (2018)
Zhao, Y., Liu, X., Qu, J.: The K-medoids clustering algorithm by a class of P system. J. Inf. Comput. Sci. 9(18), 5777–5790 (2012)
Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An unsupervised learning algorithm for membrane computing. Inf. Sci. 304, 80–91 (2015)
Peng, H., Wang, J., Shi, P., Riscos-Núñez, A., Pérez-Jiménez, M.J.: An automatic clustering algorithm inspired by membrane computing. Pattern Recogn. Lett. 68, 34–40 (2015)
Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An extended membrane system with active membrane to solve automatic fuzzy clustering problems. Int. J. Neural Syst. 26(2), 1–17 (2016)
Peng, H., Shi, P., Wang, J., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Multiobjective fuzzy clustering approach based on tissue-like membrane systems. Knowl.-Based Syst. 125, 74–82 (2017)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Python. https://www.python.org/
Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization. In: 2003 Congress on Evolutionary Computation (CEC 2003), pp. 215–220 (2003)
Zhang, R., Rudnicky, A.I.: A large scale clustering scheme for kernel k-means. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 4, pp. 289–292 (2002)
Wei, X.H., Zhang, K.: An improved PSO-means clustering algorithm based on kernel methods. J. Henan Univ. Sci. Technol.: Nat. Sci. 32(2), 41–43 (2011)
Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(20), 53–65 (1987)
Chou, C.H., Su, M.C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7(2), 205–220 (2004)
Congalton, R.G., Green, K.: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press, Boca Raton (2009)
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
Zhang, J., Niu, Y., He, W.: Using genetic algorithm to improve fuzzy k-NN. In: International Conference on Computational Intelligence and Security, pp. 475–479 (2008)
Acknowledgment
This work was partially supported by the National Natural Science Foundation of China (No. 61472328), Chunhui Project Foundation of the Education Department of China (Nos. Z2016143 and Z2016148), the Innovation Fund of Postgraduate, Xihua University (No. ycjj2018184), and Research Foundation of the Education Department of Sichuan province (No. 17TD0034), China.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Yang, J., Chen, R., Zhang, G., Peng, H., Wang, J., Riscos-Núñez, A. (2018). A Kernel-Based Membrane Clustering Algorithm. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds) Enjoying Natural Computing. Lecture Notes in Computer Science(), vol 11270. Springer, Cham. https://doi.org/10.1007/978-3-030-00265-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-00265-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00264-0
Online ISBN: 978-3-030-00265-7
eBook Packages: Computer ScienceComputer Science (R0)