Skip to main content

A Kernel-Based Membrane Clustering Algorithm

  • Chapter
  • First Online:
Enjoying Natural Computing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11270))

Abstract

The existing membrane clustering algorithms may fail to handle the data sets with non-spherical cluster boundaries. To overcome the shortcoming, this paper introduces kernel methods into membrane clustering algorithms and proposes a kernel-based membrane clustering algorithm, KMCA. By using non-linear kernel function, samples in original data space are mapped to data points in a high-dimension feature space, and the data points are clustered by membrane clustering algorithms. Therefore, a data clustering problem is formalized as a kernel clustering problem. In KMCA algorithm, a tissue-like P system is designed to determine the optimal cluster centers for the kernel clustering problem. Due to the use of non-linear kernel function, the proposed KMCA algorithm can well deal with the data sets with non-spherical cluster boundaries. The proposed KMCA algorithm is evaluated on nine benchmark data sets and is compared with four existing clustering algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 12.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MathSciNet  Google Scholar 

  2. Pǎun, Gh.: Membrane Computing: An Introduction. Springer, Berlin (2002). https://doi.org/10.1007/978-3-642-56196-2

    Book  Google Scholar 

  3. Cavaliere, M.: Evolution–communication P systems. In: Păun, Gh., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36490-0_10

    Chapter  Google Scholar 

  4. Freund, R., Pǎun, Gh., Pérez-Jiménez, M.J.: Tissue-like P systems with channel-states. Theor. Comput. Sci. 330(1), 101–116 (2005)

    Google Scholar 

  5. Bernardini, F., Gheorghe, M.: Population P systems. J. Univ. Comput. Sci. 10(5), 509–539 (2004)

    MathSciNet  Google Scholar 

  6. Pǎun, Gh., Pǎun, R.: Membrane computing and economics: numerical P systems. Fundam. Inform. 73(1–2), 213–227 (2006)

    Google Scholar 

  7. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, G.: Variants of P colonies with very simple cell structure. Int. J. Comput. Commun. Control IV(3), 224–233 (2009)

    Article  Google Scholar 

  8. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundam. Inform. 71, 279–308 (2006)

    Google Scholar 

  9. Song, T., Pan, L., Păun, Gh.: Spiking neural P systems with rules on synapses. Theor. Comput. Sci. 529, 82–95 (2014)

    Article  MathSciNet  Google Scholar 

  10. Peng, H., et al.: Competitive spiking neural P systems with rules on synapses. IEEE Trans. NanoBiosci. 16(8), 888–895 (2018)

    Article  Google Scholar 

  11. Peng, H., et al.: Spiking neural P systems with multiple channels. Neural Netw. 95, 66–71 (2017)

    Article  Google Scholar 

  12. Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile robots. Inf. Sci. 187, 33–51 (2012)

    Article  Google Scholar 

  13. Wang, X., et al.: Design and implementation of membrane controllers for trajectory tracking of nonholonomic wheeled mobile robots. Integr. Comput.-Aided Eng. 23(1), 15–30 (2016)

    Article  MathSciNet  Google Scholar 

  14. Zhang, G., Gheorghe, M., Li, Y.: A membrane algorithm with quantum-inspired subalgorithms and its application to image processing. Natural Comput. 11(4), 701–717 (2012)

    Article  MathSciNet  Google Scholar 

  15. Díaz-Pernil, D., Berciano, A., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: Segmenting images with gradient-based edge detection using membrane computing. Pattern Recogn. Lett. 34(8), 846–855 (2013)

    Article  Google Scholar 

  16. Peng, H., Wang, J., Pérez-Jiménez, M.J.: Optimal multi-level thresholding with membrane computing. Digit. Sig. Process. 37, 53–64 (2015)

    Article  Google Scholar 

  17. Alsalibi, B., Venkat, I., Al-Betar, M.A.: A membrane-inspired bat algorithm to recognize faces in unconstrained scenarios. Eng. Appl. Artif. Intell. 64, 242–260 (2017)

    Article  Google Scholar 

  18. Zhang, G., Liu, C., Rong, H.: Analyzing radar emitter signals with membrane algorithms. Math. Comput. Model. 52(11–12), 1997–2010 (2010)

    Article  Google Scholar 

  19. Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: The framework of P systems applied to solve optimal watermarking problem. Sig. Process. 101, 256–265 (2014)

    Article  Google Scholar 

  20. Wang, J., Shi, P., Peng, H.: Membrane computing model for IIR filter design. Inf. Sci. 329, 164–176 (2016)

    Article  Google Scholar 

  21. Xiong, G., Shi, D., Zhu, L., Duan, X.: A new approach to fault diagnosis of power systems using fuzzy reasoning spiking neural P systems. Math. Problems Eng. 2013(1), 211–244 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking neural P system. IEEE Trans. Fuzzy Syst. 21(2), 209–220 (2013)

    Article  Google Scholar 

  23. Wang, T., et al.: Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 30(3), 1182–1194 (2015)

    Article  Google Scholar 

  24. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Fault diagnosis of power systems using fuzzy tissue-like P systems. Integr. Comput.-Aided Eng. 24, 401–411 (2017)

    Article  Google Scholar 

  25. Peng, H.: Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Trans. Smart Grid 9(5), 4777–4784 (2018)

    Article  Google Scholar 

  26. Gheorghe, M., Manca, V., Romero-Campero, F.J.: Deterministic and stochastic P systems for modelling cellular processes. Natural Comput. 9(2), 457–473 (2010)

    Article  MathSciNet  Google Scholar 

  27. García-Quismondo, M., Levin, M., Lobo-Fernández, D.: Modeling regenerative processes with membrane computing. Inf. Sci. 381, 229–249 (2017)

    Article  Google Scholar 

  28. García-Quismondo, M., Nisbet, I.C.T., Mostello, C.S., Reed, M.J.: Modeling population dynamics of roseate terns (sterna dougallii) in the Northwest Atlantic Ocean. Ecol. Model. 68, 298–311 (2018)

    Article  Google Scholar 

  29. Zhao, Y., Liu, X., Qu, J.: The K-medoids clustering algorithm by a class of P system. J. Inf. Comput. Sci. 9(18), 5777–5790 (2012)

    Google Scholar 

  30. Peng, H., Wang, J., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An unsupervised learning algorithm for membrane computing. Inf. Sci. 304, 80–91 (2015)

    Article  Google Scholar 

  31. Peng, H., Wang, J., Shi, P., Riscos-Núñez, A., Pérez-Jiménez, M.J.: An automatic clustering algorithm inspired by membrane computing. Pattern Recogn. Lett. 68, 34–40 (2015)

    Article  Google Scholar 

  32. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M.J., Riscos-Núñez, A.: An extended membrane system with active membrane to solve automatic fuzzy clustering problems. Int. J. Neural Syst. 26(2), 1–17 (2016)

    Google Scholar 

  33. Peng, H., Shi, P., Wang, J., Riscos-Núñez, A., Pérez-Jiménez, M.J.: Multiobjective fuzzy clustering approach based on tissue-like membrane systems. Knowl.-Based Syst. 125, 74–82 (2017)

    Article  Google Scholar 

  34. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  35. UCI. http://archive.ics.uci.edu/ml/datasets.html

  36. Python. https://www.python.org/

  37. Merwe, D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization. In: 2003 Congress on Evolutionary Computation (CEC 2003), pp. 215–220 (2003)

    Google Scholar 

  38. Zhang, R., Rudnicky, A.I.: A large scale clustering scheme for kernel k-means. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 4, pp. 289–292 (2002)

    Google Scholar 

  39. Wei, X.H., Zhang, K.: An improved PSO-means clustering algorithm based on kernel methods. J. Henan Univ. Sci. Technol.: Nat. Sci. 32(2), 41–43 (2011)

    Google Scholar 

  40. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(20), 53–65 (1987)

    Article  Google Scholar 

  41. Chou, C.H., Su, M.C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7(2), 205–220 (2004)

    Article  MathSciNet  Google Scholar 

  42. Congalton, R.G., Green, K.: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press, Boca Raton (2009)

    Google Scholar 

  43. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  44. Zhang, J., Niu, Y., He, W.: Using genetic algorithm to improve fuzzy k-NN. In: International Conference on Computational Intelligence and Security, pp. 475–479 (2008)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China (No. 61472328), Chunhui Project Foundation of the Education Department of China (Nos. Z2016143 and Z2016148), the Innovation Fund of Postgraduate, Xihua University (No. ycjj2018184), and Research Foundation of the Education Department of Sichuan province (No. 17TD0034), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, J., Chen, R., Zhang, G., Peng, H., Wang, J., Riscos-Núñez, A. (2018). A Kernel-Based Membrane Clustering Algorithm. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds) Enjoying Natural Computing. Lecture Notes in Computer Science(), vol 11270. Springer, Cham. https://doi.org/10.1007/978-3-030-00265-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00265-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00264-0

  • Online ISBN: 978-3-030-00265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics