Skip to main content

ACORD: Ant Colony Optimization and BNF Grammar Rule Derivation

  • Chapter
  • First Online:
Enjoying Natural Computing

Abstract

Ant Colony Systems have been widely employed in optimization issues primarily focused on path finding optimization, such as Travelling Salesman Problem. The first algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and a source of food. Besides, ant colony optimization algorithms have been applied to many combinatorial optimization problems, ranging from quadratic assignment to protein folding or routing vehicles and a lot of derived methods have been adapted to dynamic problems in real variables, stochastic problems, multi-targets and parallel implementations. The main advantage lies in the choice of the edge to be explored, defined using the idea of pheromone. This article proposes the use of Ant Colony Systems to explore a Backus-Naur form grammar whose elements are solutions to a given problem. Similar studies, without using Ant Colonies, have been used to solve optimization problems, such as Grammatical Swarm (based on Particle Swarm Optimization) and Grammatical Evolution (based on Genetic Algorithms). Proposed algorithm opens the way to a new branch of research in Swarm Intelligence, which until now has been almost non-existent, using ant colony algorithms to solve problems described by a grammar. (All source code in R is available at https://github.com/fernando-demingo/ACORD-Algorithm).

This research has been partially supported by European project Regulation Study in the Adoption of the autonomous driving in the European Urban Nodes (AUTOCITS): INEA/CEF/TRAN/M2015/1143746. Action No: 2015-EU-TM-0243-S and by Spanish project Integración de Sistemas Cooperativos para Vehículos Autómos en Tráfico Compartido (CAV): TRA2016-78886-C3-3-R.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 12.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Z., Geng, X., Shao, Z.: An effective simulated annealing algorithm for solving the traveling salesman problem. J. Comput. Theor. Nanosci. 6(7), 1680–1686 (2009)

    Article  Google Scholar 

  2. Meer, K.: Simulated annealing versus metropolis for a TSP instance. Inf. Process. Lett. 104(6), 216–219 (2007)

    Article  MathSciNet  Google Scholar 

  3. Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective travelling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)

    Article  Google Scholar 

  4. Liu, F., Zeng, G.: Study of genetic algorithm with reinforcement learning to solve the TSP. Expert. Syst. Appl. 36(3), 6995–7001 (2009)

    Article  MathSciNet  Google Scholar 

  5. Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, Q.X.: Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf. Process. Lett. 103(5), 169–176 (2007)

    Article  MathSciNet  Google Scholar 

  6. Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 427–441 (2011)

    Article  MathSciNet  Google Scholar 

  7. Kollin, F., Bavey, A.: Ant colony optimization Algorithms: pheromone techniques for TSP. Technical report, KTH, School of Computer Science and Communication (CSC) (2017)

    Google Scholar 

  8. Lee, Z.J., Su, S.F., Chuang, C.C., Liu, K.H.: Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Appl. Soft Comput. 8(1), 55–78 (2008)

    Article  Google Scholar 

  9. Moslehi, G., Khorasanian, D.: A hybrid variable neighborhood search algorithm for solving the limited-buffer permutation flow shop scheduling problem with the makespan criterion. Comput. Oper. Res. 52(PB), 260–268 (2014)

    Article  MathSciNet  Google Scholar 

  10. Xiao, J., Li, L.: A hybrid ant colony optimization for continuous domains. Expert Syst. Appl. 38(9), 11072–11077 (2011)

    Article  Google Scholar 

  11. Xiang, W., Yin, J., Lim, G.: An ant colony optimization approach for solving an operating room surgery scheduling problem. Comput. Ind. Eng. 85(C), 335–345 (2015)

    Article  Google Scholar 

  12. Neumann, F., Sudholt, D., Witt, C.: Rigorous analyses for the combination of ant colony optimization and local search. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 132–143. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7_12

    Chapter  Google Scholar 

  13. Gan, R., Guo, Q., Chang, H., Yi, Y.: Improved ant colony optimization algorithm for the traveling salesman problems. J. Syst. Eng. Electron. 21(2), 329–333 (2010)

    Article  Google Scholar 

  14. Jovanovic, R., Tuba, M., Simian, D.: Comparison of different topologies for island-based multi-colony ant algorithms for the minimum weight vertex cover problem. WSEAS Trans. Comput. 9(1), 83–92 (2010)

    Google Scholar 

  15. Stutzle, T., Dorigo, M.: ACO algorithms for the traveling salesman problem. In: Evolutionary Algorithms in Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications. Wiley, Hoboken (1999)

    Google Scholar 

  16. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Futur. Gener. Comput. Syst. 16(9), 889–914 (2000)

    Article  Google Scholar 

  17. Wong, K.Y., See, P.C.: A new minimum pheromone threshold strategy (MPTS) for max-min ant system. Appl. Soft Comput. 9(3), 882–888 (2009)

    Article  Google Scholar 

  18. Pintea, C.M., Chira, C., Dumitrescu, D., Pop, P.C.: Sensitive ants in solving the generalized vehicle routing problem. J. Comput., Commun. Control. 6(4), 228–231 (2012)

    Google Scholar 

  19. Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930

    Chapter  Google Scholar 

  20. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)

    Book  Google Scholar 

  21. Nicolau, M.: Understanding grammatical evolution: initialisation. Genet. Program. Evolvable Mach. 18(4), 467–507 (2017)

    Article  Google Scholar 

  22. O’Neill, M., Brabazon, A.: Grammatical swarm. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 163–174. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_15

    Chapter  Google Scholar 

  23. O’Neill, M., Brabazon, A.: Grammatical swarm: the generation of programs by social programming. Nat. Comput. 5(4), 443–462 (2006)

    Article  MathSciNet  Google Scholar 

  24. Grimme, C., Schmitt, K.: Inside a predator-prey model for multi-objective optimization: a second study. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. GECCO 2006, pp. 707–714. ACM, New York (2006)

    Google Scholar 

  25. Alfonseca, M., Soler Gil, F.J.: Evolving a predator-prey ecosystem of mathematical expressions with grammatical evolution. Complexity 20(3), 66–83 (2015)

    Article  Google Scholar 

  26. Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dynamic Environments, 1st edn. Springer Publishing Company, Incorporated, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00314-1

    Book  Google Scholar 

  27. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  28. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)

    Article  Google Scholar 

  29. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate (2004)

    MATH  Google Scholar 

  30. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6, 41–83 (1959)

    Article  Google Scholar 

  31. Goss, S., Aron, S., Deneubourg, J., Pasteels, J.: Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76(12), 579–581 (1989)

    Article  Google Scholar 

  32. Oplatková, Z., Zelinka, I.: Investigation on artificial ant using analytic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. GECCO 2006, pp. 949–950. ACM, New York (2006)

    Google Scholar 

  33. Georgiou, L., Teahan, W.J.: Constituent grammatical evolution. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume. IJCAI 2011, vol. 2, pp. 1261–1268. AAAI Press (2011)

    Google Scholar 

  34. Kushchu, I.: Genetic programming and evolutionary generalization. Trans. Evol. Comput. 6(5), 431–442 (2002)

    Article  Google Scholar 

  35. Poli, R., Vanneschi, L.: Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. GECCO 2007, pp. 1335–1342. ACM, New York (2007)

    Google Scholar 

  36. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)

    Article  Google Scholar 

  37. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)

    Article  Google Scholar 

  38. Georgiou, L., Teahan, W.J.: Grammatical evolution and the santa fe trail problem. In: Filipe, J., Kacprzyk, J. (eds.) ICEC 2010 - Proceedings of the International Conference on Evolutionary Computation, (part of the International Joint Conference on Computational Intelligence IJCCI 2010), Valencia, Spain, 24–26 October 2010, pp. 10–19. SciTePress (2010)

    Google Scholar 

  39. Gutjahr, W.J.: A graph-based ant system and its convergence. Futur. Gener. Comput. Syst. 16(8), 873–888 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

History of all great works is to witness that no great work was ever done without either the active or passive support a person’s surrounding and one’s close quarters. We are highly thankful to our learned faculty, and friend, Mr. Mario Pérez Jiménez for his active guidance throughout these years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Fernando de Mingo López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Mingo López, L.F., Blas, N.G., Peñuela, J.C., Albert, A.A. (2018). ACORD: Ant Colony Optimization and BNF Grammar Rule Derivation. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds) Enjoying Natural Computing. Lecture Notes in Computer Science(), vol 11270. Springer, Cham. https://doi.org/10.1007/978-3-030-00265-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00265-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00264-0

  • Online ISBN: 978-3-030-00265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics