Abstract
Ant Colony Systems have been widely employed in optimization issues primarily focused on path finding optimization, such as Travelling Salesman Problem. The first algorithm was aiming to search for an optimal path in a graph, based on the behavior of ants seeking a path between their colony and a source of food. Besides, ant colony optimization algorithms have been applied to many combinatorial optimization problems, ranging from quadratic assignment to protein folding or routing vehicles and a lot of derived methods have been adapted to dynamic problems in real variables, stochastic problems, multi-targets and parallel implementations. The main advantage lies in the choice of the edge to be explored, defined using the idea of pheromone. This article proposes the use of Ant Colony Systems to explore a Backus-Naur form grammar whose elements are solutions to a given problem. Similar studies, without using Ant Colonies, have been used to solve optimization problems, such as Grammatical Swarm (based on Particle Swarm Optimization) and Grammatical Evolution (based on Genetic Algorithms). Proposed algorithm opens the way to a new branch of research in Swarm Intelligence, which until now has been almost non-existent, using ant colony algorithms to solve problems described by a grammar. (All source code in R is available at https://github.com/fernando-demingo/ACORD-Algorithm).
This research has been partially supported by European project Regulation Study in the Adoption of the autonomous driving in the European Urban Nodes (AUTOCITS): INEA/CEF/TRAN/M2015/1143746. Action No: 2015-EU-TM-0243-S and by Spanish project Integración de Sistemas Cooperativos para Vehículos Autómos en Tráfico Compartido (CAV): TRA2016-78886-C3-3-R.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Wang, Z., Geng, X., Shao, Z.: An effective simulated annealing algorithm for solving the traveling salesman problem. J. Comput. Theor. Nanosci. 6(7), 1680–1686 (2009)
Meer, K.: Simulated annealing versus metropolis for a TSP instance. Inf. Process. Lett. 104(6), 216–219 (2007)
Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective travelling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)
Liu, F., Zeng, G.: Study of genetic algorithm with reinforcement learning to solve the TSP. Expert. Syst. Appl. 36(3), 6995–7001 (2009)
Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C., Wang, Q.X.: Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf. Process. Lett. 103(5), 169–176 (2007)
Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 427–441 (2011)
Kollin, F., Bavey, A.: Ant colony optimization Algorithms: pheromone techniques for TSP. Technical report, KTH, School of Computer Science and Communication (CSC) (2017)
Lee, Z.J., Su, S.F., Chuang, C.C., Liu, K.H.: Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment. Appl. Soft Comput. 8(1), 55–78 (2008)
Moslehi, G., Khorasanian, D.: A hybrid variable neighborhood search algorithm for solving the limited-buffer permutation flow shop scheduling problem with the makespan criterion. Comput. Oper. Res. 52(PB), 260–268 (2014)
Xiao, J., Li, L.: A hybrid ant colony optimization for continuous domains. Expert Syst. Appl. 38(9), 11072–11077 (2011)
Xiang, W., Yin, J., Lim, G.: An ant colony optimization approach for solving an operating room surgery scheduling problem. Comput. Ind. Eng. 85(C), 335–345 (2015)
Neumann, F., Sudholt, D., Witt, C.: Rigorous analyses for the combination of ant colony optimization and local search. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 132–143. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7_12
Gan, R., Guo, Q., Chang, H., Yi, Y.: Improved ant colony optimization algorithm for the traveling salesman problems. J. Syst. Eng. Electron. 21(2), 329–333 (2010)
Jovanovic, R., Tuba, M., Simian, D.: Comparison of different topologies for island-based multi-colony ant algorithms for the minimum weight vertex cover problem. WSEAS Trans. Comput. 9(1), 83–92 (2010)
Stutzle, T., Dorigo, M.: ACO algorithms for the traveling salesman problem. In: Evolutionary Algorithms in Engineering and Computer Science: Recent Advances in Genetic Algorithms, Evolution Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications. Wiley, Hoboken (1999)
Stützle, T., Hoos, H.H.: MAX-MIN ant system. Futur. Gener. Comput. Syst. 16(9), 889–914 (2000)
Wong, K.Y., See, P.C.: A new minimum pheromone threshold strategy (MPTS) for max-min ant system. Appl. Soft Comput. 9(3), 882–888 (2009)
Pintea, C.M., Chira, C., Dumitrescu, D., Pop, P.C.: Sensitive ants in solving the generalized vehicle routing problem. J. Comput., Commun. Control. 6(4), 228–231 (2012)
Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)
Nicolau, M.: Understanding grammatical evolution: initialisation. Genet. Program. Evolvable Mach. 18(4), 467–507 (2017)
O’Neill, M., Brabazon, A.: Grammatical swarm. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 163–174. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_15
O’Neill, M., Brabazon, A.: Grammatical swarm: the generation of programs by social programming. Nat. Comput. 5(4), 443–462 (2006)
Grimme, C., Schmitt, K.: Inside a predator-prey model for multi-objective optimization: a second study. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. GECCO 2006, pp. 707–714. ACM, New York (2006)
Alfonseca, M., Soler Gil, F.J.: Evolving a predator-prey ecosystem of mathematical expressions with grammatical evolution. Complexity 20(3), 66–83 (2015)
Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dynamic Environments, 1st edn. Springer Publishing Company, Incorporated, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00314-1
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)
Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)
Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Company, Scituate (2004)
Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6, 41–83 (1959)
Goss, S., Aron, S., Deneubourg, J., Pasteels, J.: Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76(12), 579–581 (1989)
Oplatková, Z., Zelinka, I.: Investigation on artificial ant using analytic programming. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. GECCO 2006, pp. 949–950. ACM, New York (2006)
Georgiou, L., Teahan, W.J.: Constituent grammatical evolution. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume. IJCAI 2011, vol. 2, pp. 1261–1268. AAAI Press (2011)
Kushchu, I.: Genetic programming and evolutionary generalization. Trans. Evol. Comput. 6(5), 431–442 (2002)
Poli, R., Vanneschi, L.: Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. GECCO 2007, pp. 1335–1342. ACM, New York (2007)
O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)
Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)
Georgiou, L., Teahan, W.J.: Grammatical evolution and the santa fe trail problem. In: Filipe, J., Kacprzyk, J. (eds.) ICEC 2010 - Proceedings of the International Conference on Evolutionary Computation, (part of the International Joint Conference on Computational Intelligence IJCCI 2010), Valencia, Spain, 24–26 October 2010, pp. 10–19. SciTePress (2010)
Gutjahr, W.J.: A graph-based ant system and its convergence. Futur. Gener. Comput. Syst. 16(8), 873–888 (2000)
Acknowledgments
History of all great works is to witness that no great work was ever done without either the active or passive support a person’s surrounding and one’s close quarters. We are highly thankful to our learned faculty, and friend, Mr. Mario Pérez Jiménez for his active guidance throughout these years.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
de Mingo López, L.F., Blas, N.G., Peñuela, J.C., Albert, A.A. (2018). ACORD: Ant Colony Optimization and BNF Grammar Rule Derivation. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds) Enjoying Natural Computing. Lecture Notes in Computer Science(), vol 11270. Springer, Cham. https://doi.org/10.1007/978-3-030-00265-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-00265-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00264-0
Online ISBN: 978-3-030-00265-7
eBook Packages: Computer ScienceComputer Science (R0)