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Preface

More than 40 years after their invention, actors have become a common reference
model for designing and developing concurrent and distributed systems.

The actor model was introduced by Carl Hewitt and colleagues in 1973 [7], as a
mathematical model of concurrent computation in which actors play the role of uni-
versal primitives of concurrent computation. In response to a message that it receives,
an actor can: make local decisions, create more actors, send more messages, and
determine how to respond to the next message received. Actors may modify their own
private state, but can only affect each other through messages (avoiding the need for
locks or other synchronization mechanisms). Since its conception, the model served
both as a framework for a theoretical understanding of computation and as the theo-
retical basis for several practical implementations of concurrent systems [6].

In the 1980s and 1990s the model helped researchers understand and define the
extension of object-oriented programming towards concurrency, e.g., in the form of
concurrent object-oriented programming [1, 2, 4, 11].

In the mainstream, meanwhile, the panorama was dominated by sequential
programming until the middle of the 2000s, when the “concurrency revolution” began
[5, 9]. Since then, concurrent, asynchronous, and distributed programming have
gradually become part of everyday design and programming.

If the 1980s and 1990s were dominated by a vision in which mainstream pro-
gramming and programming paradigms could abstract from concurrency and distri-
bution, in recent years there has been an increasing awareness that this is not feasible
(e.g., when building reactive applications1), and – moreover – first-class concurrency
abstractions, such actors and message passing, provide effective modeling and
designing power to deal with the complexity of modern applications and application
domains [3, 10].

The AGERE! workshop started in 2011 at the SPLASH conference to investigate
the definition of suitable levels of abstraction, programming languages, and platforms
to support and promote a decentralized mindset in solving problems, designing sys-
tems, as well as programming applications, including the teaching of computer pro-
gramming [8]. That is, the question is how to think about problems and programs
embracing decentralization of control and interaction as the most essential features. To
this end, actors and agents were taken as key references, recognized as two main broad
families of concepts, abstractions, and programming tools described in the literature,
which explicitly promote such decentralized thinking.

The set of papers collected in this issue originated from the AGERE! workshop
series – the last edition was held in 2017 – and concern the application of actor-based
approaches to mainstream application domains and the discussion of related issues.

1 For example, see https://www.reactivemanifesto.org.

https://www.reactivemanifesto.org/


The issue is divided into two parts. The first part concerns selected application
domains:

– Web Programming – Parallel and Distributed Web Programming with Actors by
Florian Myter, Christophe Scholliers, and Wolfgang De Meuter

– Data-Intensive Parallel Programming — OpenCL Actors: Adding Data Parallelism
to Actor-Based Programming with CAF by Raphael Hiesgen, Dominik Charousset,
and Thomas Schmidt

– Mobile Computing — AmbientJS: A Mobile Cross-Platform Actor Library for
Multi-networked Mobile Applications by Elisa Gonzalez Boix, Kevin De Porre,
Wolfgang De Meuter, and Christophe Scholliers

– Self-Organizing Systems — Programming Actor-Based Collective Adaptive Sys-
tems by Roberto Casadei and Mirko Viroli

The second part concerns selected issues:

– Scheduling — Pluggable Scheduling for the Reactor Programming Model by
Aleksandar Prokopec

– Debugging — A Study of Concurrency Bugs and Advanced Development Support
for Actor-Based Programs by Carmen Torres Lopez, Stefan Marr, Hanspeter
Mössenböck, and Elisa Gonzalez Boix

– Communication and Coordination — A Model for Separating Communication
Concerns of Concurrent Systems by Hongxing Geng and Nadeem Jamali

– Monitoring — A Homogeneous Actor-Based Monitor Language for Adaptive
Behavior by Tony Clark, Vinay Kulkarni, Souvik Barat, and Balbir Barn
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