
Lecture Notes in Computer Science 10789

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Alessandro Ricci • Philipp Haller (Eds.)

Programming with Actors
State-of-the-Art
and Research Perspectives

123

Editors
Alessandro Ricci
University of Bologna
Cesena
Italy

Philipp Haller
KTH Royal Institute of Technology
Stockholm
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00301-2 ISBN 978-3-030-00302-9 (eBook)
https://doi.org/10.1007/978-3-030-00302-9

Library of Congress Control Number: 2018954065

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

More than 40 years after their invention, actors have become a common reference
model for designing and developing concurrent and distributed systems.

The actor model was introduced by Carl Hewitt and colleagues in 1973 [7], as a
mathematical model of concurrent computation in which actors play the role of uni-
versal primitives of concurrent computation. In response to a message that it receives,
an actor can: make local decisions, create more actors, send more messages, and
determine how to respond to the next message received. Actors may modify their own
private state, but can only affect each other through messages (avoiding the need for
locks or other synchronization mechanisms). Since its conception, the model served
both as a framework for a theoretical understanding of computation and as the theo-
retical basis for several practical implementations of concurrent systems [6].

In the 1980s and 1990s the model helped researchers understand and define the
extension of object-oriented programming towards concurrency, e.g., in the form of
concurrent object-oriented programming [1, 2, 4, 11].

In the mainstream, meanwhile, the panorama was dominated by sequential
programming until the middle of the 2000s, when the “concurrency revolution” began
[5, 9]. Since then, concurrent, asynchronous, and distributed programming have
gradually become part of everyday design and programming.

If the 1980s and 1990s were dominated by a vision in which mainstream pro-
gramming and programming paradigms could abstract from concurrency and distri-
bution, in recent years there has been an increasing awareness that this is not feasible
(e.g., when building reactive applications1), and – moreover – first-class concurrency
abstractions, such actors and message passing, provide effective modeling and
designing power to deal with the complexity of modern applications and application
domains [3, 10].

The AGERE! workshop started in 2011 at the SPLASH conference to investigate
the definition of suitable levels of abstraction, programming languages, and platforms
to support and promote a decentralized mindset in solving problems, designing sys-
tems, as well as programming applications, including the teaching of computer pro-
gramming [8]. That is, the question is how to think about problems and programs
embracing decentralization of control and interaction as the most essential features. To
this end, actors and agents were taken as key references, recognized as two main broad
families of concepts, abstractions, and programming tools described in the literature,
which explicitly promote such decentralized thinking.

The set of papers collected in this issue originated from the AGERE! workshop
series – the last edition was held in 2017 – and concern the application of actor-based
approaches to mainstream application domains and the discussion of related issues.

1 For example, see https://www.reactivemanifesto.org.

https://www.reactivemanifesto.org/

The issue is divided into two parts. The first part concerns selected application
domains:

– Web Programming – Parallel and Distributed Web Programming with Actors by
Florian Myter, Christophe Scholliers, and Wolfgang De Meuter

– Data-Intensive Parallel Programming — OpenCL Actors: Adding Data Parallelism
to Actor-Based Programming with CAF by Raphael Hiesgen, Dominik Charousset,
and Thomas Schmidt

– Mobile Computing — AmbientJS: A Mobile Cross-Platform Actor Library for
Multi-networked Mobile Applications by Elisa Gonzalez Boix, Kevin De Porre,
Wolfgang De Meuter, and Christophe Scholliers

– Self-Organizing Systems — Programming Actor-Based Collective Adaptive Sys-
tems by Roberto Casadei and Mirko Viroli

The second part concerns selected issues:

– Scheduling — Pluggable Scheduling for the Reactor Programming Model by
Aleksandar Prokopec

– Debugging — A Study of Concurrency Bugs and Advanced Development Support
for Actor-Based Programs by Carmen Torres Lopez, Stefan Marr, Hanspeter
Mössenböck, and Elisa Gonzalez Boix

– Communication and Coordination — A Model for Separating Communication
Concerns of Concurrent Systems by Hongxing Geng and Nadeem Jamali

– Monitoring — A Homogeneous Actor-Based Monitor Language for Adaptive
Behavior by Tony Clark, Vinay Kulkarni, Souvik Barat, and Balbir Barn

References

1. G. Agha. Concurrent object-oriented programming. Commun. ACM, 33:125–141,
September 1990.

2. G. Agha, P. Wegner, and A. Yonezawa, editors. Research directions in concurrent
object-oriented programming. MIT Press, Cambridge, MA, USA, 1993.

3. J. Armstrong. Erlang. Commun. ACM, 53(9):68–75, Sept. 2010.
4. J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and distribution in

object-oriented programming. ACM Comput. Surv., 30(3):291–329, Sept. 1998.
5. K. B. Bruce, A. Danyluk, and T. Murtagh. Introducing concurrency in CS 1. In
Proceedings of the 41st ACM Technical Symposium on Computer Science Edu-
cation, SIGCSE ‘10, pages 224–228, New York, NY, USA, 2010. ACM.

6. C. Hewitt. Viewing control structures as patterns of passing messages. Artif. Intell.,
8(3):323–364, 1977.

7. C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for
artificial intelligence. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

VI Preface

8. A. Ricci, R. H. Bordini, and G. Agha. AGERE! (Actors and aGEnts REloaded):
SPLASH 2011 workshop on programming systems, languages and applications
based on actors, agents and decentralized control. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion, OOPSLA ‘11, pages 325–326, New
York, NY, USA, 2011. ACM.

9. H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue:
Tomorrow’s Computing Today, 3(7):54–62, Sept. 2005.

10. V. Vernon. Reactive Messaging Patterns with the Actor Model: Applications and
Integration in Scala and Akka. Addison-Wesley Professional, 1st edition, 2015.

11. A. Yonezawa and M. Tokoro, editors. Object-oriented concurrent programming,
Cambridge, MA, USA, 1987. MIT Press.

June 2018 Alessandro Ricci
Philipp Haller

Preface VII

Contents

Actors and Programming – Selected Domains

Parallel and Distributed Web Programming with Actors 3
Florian Myter, Christophe Scholliers, and Wolfgang De Meuter

AmbientJS: A Mobile Cross-Platform Actor Library for Multi-Networked
Mobile Applications . 32

Elisa Gonzalez Boix, Kevin De Porre, Wolfgang De Meuter,
and Christophe Scholliers

OpenCL Actors – Adding Data Parallelism to Actor-Based Programming
with CAF. 59

Raphael Hiesgen, Dominik Charousset, and Thomas C. Schmidt

Programming Actor-Based Collective Adaptive Systems 94
Roberto Casadei and Mirko Viroli

Actors and Programming – Selected Issues

Pluggable Scheduling for the Reactor Programming Model 125
Aleksandar Prokopec

A Study of Concurrency Bugs and Advanced Development Support
for Actor-based Programs. 155

Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix,
and Hanspeter Mössenböck

interActors: A Model for Separating Communication Concerns
of Concurrent Systems. 186

Hongxing Geng and Nadeem Jamali

A Homogeneous Actor-Based Monitor Language for Adaptive Behaviour . . . 216
Tony Clark, Vinay Kulkarni, Souvik Barat, and Balbir Barn

Author Index . 245

	Preface
	References

	Contents

