Skip to main content

Analysis of Exact Electrode Positioning Systems for Multichannel-EEG

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2018)

Abstract

Electroencephalography (EEG) consists on the recording of brain electrical activity along the scalp surface. The potentials generated in the brain are acquired using electrodes covering the head. This method is efficient, but in most cases the operator should deal with bad locations and slipping, which generate motion artifacts and localization errors in posterior brain imaging and connectivity analyzes. The aim of this work is to elaborate a reference framework addressed to the currently available electrode positioning methods for EEG in terms of efficiency, viability, and placement error. With this purpose, different procedures for electrode localization were considered in this study: manual methods, EEG-caps, Magnetic Resonance Imaging EEG electrode localization, digitization, 3D laser scanner, and photogrammetry. We found that the method with higher accuracy is digitization; but it requires a controlled environment and the system itself is expensive. In terms of implementation time, the 3D hand-held laser scanner and photogrammetry provided the better results and can be used in uncontrolled clinical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Müller-Putz, G.R., Riedl, R., Wriessnegger, S.C.: Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. Commun. Assoc. Inf. Syst. 37(1), 46 (2015)

    Google Scholar 

  2. Baillet, S., Mosher, J., Leahy, R.: Electromagnetic brain mapping. IEEE Signal Process. Mag. 18(6), 14–30 (2001)

    Article  Google Scholar 

  3. Beltrachini, L., von Ellenrieder, N., Muravchik, C.H.: General bounds for electrode mislocation on the EEG inverse problem. Comput. Methods Programs Biomed. 103(1), 1–9 (2011)

    Article  Google Scholar 

  4. Jurcak, V., Tsuzuki, D., Dan, I.: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34(4), 1600–1611 (2007)

    Article  Google Scholar 

  5. Towle, V.L., et al.: The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr. Clin. Neurophysiol. 86(1), 1–6 (1993)

    Article  Google Scholar 

  6. Wellcome Centre for Human Neuroimaging: SPM12-Statistical Parametric Mapping (2016). http://www.fil.ion.ucl.ac.uk/spm/software/spm12

  7. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: Fieldtrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1 (2011)

    Article  Google Scholar 

  8. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  9. De Munck, J., Vijn, P., Spekreijse, H.: A practical method for determining electrode positions on the head. Clin. Neurophysiol. 78(1), 85–87 (1991)

    Article  Google Scholar 

  10. Le, J., Lu, M., Pellouchoud, E., Gevins, A.: A rapid method for determining standard 10/10 electrode positions for high resolution EEG studies. Electroencephalogr. Clin. Neurophysiol. 106(6), 554–558 (1998)

    Article  Google Scholar 

  11. Atcherson, S.R., Gould, H.J., Pousson, M.A., Prout, T.M.: Variability of electrode positions using electrode caps. Brain Topogr. 20(2), 105–111 (2007)

    Article  Google Scholar 

  12. Koessler, L., et al.: Automatic localization and labeling of EEG sensors (ALLES) in MRI volume. NeuroImage 41(3), 914–923 (2008)

    Article  MathSciNet  Google Scholar 

  13. Echallier, J., Perrin, F., Pernier, J.: Computer-assisted placement of electrodes on the human head. Electroencephalogr. Clin. Neurophysiol. 82(2), 160–163 (1992)

    Article  Google Scholar 

  14. Engels, L., De Tiege, X., de Beeck, M.O., Warzée, N.: Factors influencing the spatial precision of electromagnetic tracking systems used for MEG/EEG source imaging. Neurophysiol. Clin./Clin. Neurophysiol. 40(1), 19–25 (2010)

    Article  Google Scholar 

  15. Koessler, L., Cecchin, T., Ternisien, E., Maillard, L.: 3D handheld laser scanner based approach for automatic identification and localization of EEG sensors. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 3707–3710. IEEE (2010)

    Google Scholar 

  16. Russell, G.S., Eriksen, K.J., Poolman, P., Luu, P., Tucker, D.M.: Geodesic photogrammetry for localizing sensor positions in dense-array EEG. Clin. Neurophysiol. 116(5), 1130–1140 (2005)

    Article  Google Scholar 

  17. Baysal, U., Şengül, G.: Single camera photogrammetry system for EEG electrode identification and localization. Ann. Biomed. Eng. 38(4), 1539–1547 (2010)

    Article  Google Scholar 

  18. Qian, S., Sheng, Y.: A single camera photogrammetry system for multi-angle fast localization of EEG electrodes. Ann. Biomed. Eng. 39(11), 2844 (2011)

    Article  Google Scholar 

  19. Zhang, J., Chen, J., Chen, S., Xiao, G., Li, X.: Multimodal spatial calibration for accurately registering EEG sensor positions. Comput. Math. Methods Med. 2014, 1–7 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Sharbrough, F., Chatrian, G., Lsser, R., Luders, H., Nuwer, M., Picton, T.: Guidelines for standard electrode position nomenclature bloomfield: American EEG society. Technical report (1990)

    Google Scholar 

  21. Hairston, W.D., et al.: Usability of four commercially-oriented EEG systems. J. Neural Eng. 11(4), 046018 (2014)

    Article  Google Scholar 

  22. Yoo, S.S., et al.: 3D localization of surface 10–20 EEG electrodes on high resolution anatomical MR images. Electroencephalogr. Clin. Neurophysiol. 102(4), 335–339 (1997)

    Article  Google Scholar 

  23. Dalal, S.S., Rampp, S., Willomitzer, F., Ettl, S.: Consequences of EEG electrode position error on ultimate beamformer source reconstruction performance. Front. Neurosci. 8, 42 (2014)

    Article  Google Scholar 

  24. López, J., Penny, W.D., Espinosa, J., Barnes, G.R.: A general bayesian treatment for MEG source reconstruction incorporating lead field uncertainty. NeuroImage 60(2), 1194–1204 (2012)

    Article  Google Scholar 

  25. Hummel, J., et al.: Evaluation of a new electromagnetic tracking system using a standardized assessment protocol. Phys. Med. Biol. 51(10), N205 (2006)

    Article  Google Scholar 

  26. Éric, S.P., Gagné, P.l., Caron, A.T., Beaupré, N., Tubic, D., Hébert, P.: Hand-held self-referenced apparatus for three-dimensional scanning. US Patent 8,082,120 (2011)

    Google Scholar 

  27. Koessler, L., Cecchin, T., Caspary, O., Benhadid, A., Vespignani, H., Maillard, L.: EEG-MRI co-registration and sensor labeling using a 3D laser scanner. Ann. Biomed. Eng. 39(3), 983–995 (2011)

    Article  Google Scholar 

  28. The MathWorks: MATLAB users guide (1998)

    Google Scholar 

  29. Clausner, T., Dalal, S.S., Crespo-García, M.: Photogrammetry-based head digitization for rapid and accurate localization of EEG electrodes and MEG fiducial markers using a single digital SLR camera. Front. Neurosci. 11, 264 (2017)

    Article  Google Scholar 

  30. Hallez, H., et al.: Review on solving the forward problem in EEG source analysis. J. Neuro Eng. Rehabil. 4, 46 (2007). https://doi.org/10.1186/1743-0003-4-46

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by Colciencias Grant 111577757638.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Rodríguez-Calvache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez-Calvache, M., Calle, A., Valderrama, S., López, I.A., López, J.D. (2018). Analysis of Exact Electrode Positioning Systems for Multichannel-EEG. In: Figueroa-García, J., López-Santana, E., Rodriguez-Molano, J. (eds) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science, vol 915. Springer, Cham. https://doi.org/10.1007/978-3-030-00350-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00350-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00349-4

  • Online ISBN: 978-3-030-00350-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics