Skip to main content

Equivalence Relations on Fuzzy Subgroups

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (CAEPIA 2018)

Abstract

We compare four equivalence relations defined in fuzzy subgroups: Isomorphism, fuzzy isomorphism and two equivalence relations defined using level subset notion. We study if the image of two equivalent fuzzy subgroups through aggregation functions is a fuzzy subgroup, when it belongs to the same class of equivalence and if the supreme property is preserved in the class of equivalence and through aggregation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anthony, J.M., Sherwood, H.: Fuzzy groups redefined. J. Math. Anal. Appl. 69, 124–130 (1979)

    Article  MathSciNet  Google Scholar 

  2. Bejines, C., Chasco, M.J., Elorza, J., Montes, S.: On the preservation of an equivalence relation between fuzzy subgroups. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT 2017. AISC, vol. 641, pp. 159–167. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66830-7_15

    Chapter  Google Scholar 

  3. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  4. Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operation. New Trends and Applications. Physica-Verlag, Heidelberg (2002)

    Book  Google Scholar 

  5. Das, P.S.: Fuzzy groups and level subgroups. J. Math. Anal. Appl. 84, 264–269 (1981)

    Article  MathSciNet  Google Scholar 

  6. Dixit, V.N., Kumar, R., Ajmal, N.: Level subgroups and union of fuzzy subgroups. Fuzzy Sets Syst. 37, 359–371 (1990)

    Article  MathSciNet  Google Scholar 

  7. Fodor, J., Kacprzyk, J.: Aspect of Soft Computing, Intelligent Robotics and Control. Studies in Computational Intelligence, vol. 241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03633-0

    Book  Google Scholar 

  8. Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation functions: means. Inf. Sci. 181, 1–22 (2011)

    Article  MathSciNet  Google Scholar 

  9. Iranmanesh, A., Naragui, H.: The connection between some equivalence relations on fuzzy subgroups. Iran. J. Fuzzy Syst. 8(5), 69–90 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Jain, A.: Fuzzy subgroup and certain equivalence relations. Iran. J. Fuzzy Syst. 3, 75–91 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Li, S.Y., Chen, D.G., Gu, W.X., Wang, H.: Fuzzy homomorphisms. Fuzzy Sets Syst. 79(2), 235–238 (1996)

    Article  MathSciNet  Google Scholar 

  12. Mordeson, J.N., Bhutani, K.R., Rosenfeld, A.: Fuzzy Groups Theory. Springer, Heidelberg (2005). https://doi.org/10.1007/b12359

    Book  MATH  Google Scholar 

  13. Murali, V., Makamba, B.: On an equivalence of fuzzy subgroups I. Fuzzy Sets Syst. 123, 259–264 (2001)

    Article  MathSciNet  Google Scholar 

  14. Murali, V., Makamba, B.: On an equivalence of fuzzy subgroups II. Fuzzy Sets Syst. 136, 93–104 (2003)

    Article  MathSciNet  Google Scholar 

  15. Murali, V., Makamba, B.: On an equivalence of fuzzy subgroups III. Int. J. Math. Sci. 36, 2303–2313 (2003)

    Article  MathSciNet  Google Scholar 

  16. Ray, S.: Isomorphic fuzzy groups. Fuzzy Sets Syst. 50, 201–207 (1992)

    Article  MathSciNet  Google Scholar 

  17. Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35, 512–517 (1971)

    Article  MathSciNet  Google Scholar 

  18. Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to Systems Analysis, pp. 54–59. Wiley, New York (1975)

    Book  Google Scholar 

  19. Zhang, Y.: Some properties on fuzzy subgroups. Fuzzy Sets Syst. 119, 427–438 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support of the Spanish Ministerio de Economía y Competitividad (Grant TIN2014-59543-P and Grant MTM 2016-79422-P). Carlos Bejines also thanks the support of the Asociación de Amigos of the University of Navarra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bejines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bejines, C., Chasco, M.J., Elorza, J., Montes, S. (2018). Equivalence Relations on Fuzzy Subgroups. In: Herrera, F., et al. Advances in Artificial Intelligence. CAEPIA 2018. Lecture Notes in Computer Science(), vol 11160. Springer, Cham. https://doi.org/10.1007/978-3-030-00374-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00374-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00373-9

  • Online ISBN: 978-3-030-00374-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics