Abstract
We compare four equivalence relations defined in fuzzy subgroups: Isomorphism, fuzzy isomorphism and two equivalence relations defined using level subset notion. We study if the image of two equivalent fuzzy subgroups through aggregation functions is a fuzzy subgroup, when it belongs to the same class of equivalence and if the supreme property is preserved in the class of equivalence and through aggregation functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anthony, J.M., Sherwood, H.: Fuzzy groups redefined. J. Math. Anal. Appl. 69, 124–130 (1979)
Bejines, C., Chasco, M.J., Elorza, J., Montes, S.: On the preservation of an equivalence relation between fuzzy subgroups. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K.T., Krawczak, M. (eds.) IWIFSGN/EUSFLAT 2017. AISC, vol. 641, pp. 159–167. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66830-7_15
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6
Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operation. New Trends and Applications. Physica-Verlag, Heidelberg (2002)
Das, P.S.: Fuzzy groups and level subgroups. J. Math. Anal. Appl. 84, 264–269 (1981)
Dixit, V.N., Kumar, R., Ajmal, N.: Level subgroups and union of fuzzy subgroups. Fuzzy Sets Syst. 37, 359–371 (1990)
Fodor, J., Kacprzyk, J.: Aspect of Soft Computing, Intelligent Robotics and Control. Studies in Computational Intelligence, vol. 241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03633-0
Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation functions: means. Inf. Sci. 181, 1–22 (2011)
Iranmanesh, A., Naragui, H.: The connection between some equivalence relations on fuzzy subgroups. Iran. J. Fuzzy Syst. 8(5), 69–90 (2011)
Jain, A.: Fuzzy subgroup and certain equivalence relations. Iran. J. Fuzzy Syst. 3, 75–91 (2006)
Li, S.Y., Chen, D.G., Gu, W.X., Wang, H.: Fuzzy homomorphisms. Fuzzy Sets Syst. 79(2), 235–238 (1996)
Mordeson, J.N., Bhutani, K.R., Rosenfeld, A.: Fuzzy Groups Theory. Springer, Heidelberg (2005). https://doi.org/10.1007/b12359
Murali, V., Makamba, B.: On an equivalence of fuzzy subgroups I. Fuzzy Sets Syst. 123, 259–264 (2001)
Murali, V., Makamba, B.: On an equivalence of fuzzy subgroups II. Fuzzy Sets Syst. 136, 93–104 (2003)
Murali, V., Makamba, B.: On an equivalence of fuzzy subgroups III. Int. J. Math. Sci. 36, 2303–2313 (2003)
Ray, S.: Isomorphic fuzzy groups. Fuzzy Sets Syst. 50, 201–207 (1992)
Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35, 512–517 (1971)
Negoita, C.V., Ralescu, D.A.: Applications of Fuzzy Sets to Systems Analysis, pp. 54–59. Wiley, New York (1975)
Zhang, Y.: Some properties on fuzzy subgroups. Fuzzy Sets Syst. 119, 427–438 (2001)
Acknowledgement
The authors acknowledge the financial support of the Spanish Ministerio de Economía y Competitividad (Grant TIN2014-59543-P and Grant MTM 2016-79422-P). Carlos Bejines also thanks the support of the Asociación de Amigos of the University of Navarra.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Bejines, C., Chasco, M.J., Elorza, J., Montes, S. (2018). Equivalence Relations on Fuzzy Subgroups. In: Herrera, F., et al. Advances in Artificial Intelligence. CAEPIA 2018. Lecture Notes in Computer Science(), vol 11160. Springer, Cham. https://doi.org/10.1007/978-3-030-00374-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-00374-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00373-9
Online ISBN: 978-3-030-00374-6
eBook Packages: Computer ScienceComputer Science (R0)