Abstract
In 2018, Amadori et al. proposed a new variant of index calculus to solve the elliptic curve discrete logarithm problem (ECDLP), using Semaev’s summation polynomials. The variant drastically decreases the number of required Gröbner basis computations, and it outperforms other index calculus algorithms for the ECDLP over prime fields. In this paper, we provide several improvements to accelerate to solve systems of multivariate equations arising in the variant. A main improvement is to apply the hybrid method, which mixes exhaustive search and Gröbner bases techniques to solve multivariate systems over finite fields. We also make use of symmetries of summation polynomials. We show experimental results of our improvements, and give their complexity analysis to discuss a limitation of our acceleration in both theory and practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amadori, A., Pintore, F., Sala, M.: On the discrete logarithm problem for prime-field elliptic curves. Finite Fields Appl. 51, 168–182 (2018)
Bernstein, D.J., et al.: Faster elliptic-curve discrete logarithms on FPGAs. IACR Cryptology ePrint Archive 2016/382 (2016)
Bettale, L., Faugère, J.C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)
Blake, I.F., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography, vol. 265. Cambridge University Press, Cambridge (1999)
Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy reduction. Int. J. Appl. Cryptogr. 2(3), 212–228 (2012)
Caminata, A., Gorla, E.: Solving multivariate polynomial systems and an invariant from commutative algebra. arXiv preprint arXiv:1706.06319 (2017)
Caviglia, G., Sbarra, E.: Characteristic-free bounds for the castelnuovo-mumford regularity. Compos. Math. 141(6), 1365–1373 (2005)
Cohen, H., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)
Diem, C.: On the discrete logarithm problem in elliptic curves. Compos. Math. 147(01), 75–104 (2011)
Eisenbud, D.: The Geometry of Syzygies: A Second Course in Algebraic Geometry and Commutative Algebra. Graduate Texts in Mathematics, vol. 229. Springer, New York (2005). https://doi.org/10.1007/b137572
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)
Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: International Symposium on Symbolic and Algebraic Computation-ISSAC 2002, pp. 75–83. ACM (2002)
Faugère, J.-C., Perret, L., Petit, C., Renault, G.: Improving the complexity of index calculus algorithms in elliptic curves over binary fields. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 27–44. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_4
Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm problem. Des. Codes Cryptogr. 78(1), 51–72 (2016)
Galbraith, S.D., Gebregiyorgis, S.W.: Summation polynomial algorithms for elliptic curves in characteristic two. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 409–427. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2_24
Gary, M., Daniela, M.: A few more index calculus algorithms for the elliptic curve discrete logarithm problem. Cryptology ePrint Archive: Report 2017/1262 (2017). https://eprint.iacr.org/2017/1262
Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009)
Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2006). https://doi.org/10.1007/b97644
Hashemi, A., Seiler, W.M.: Dimension-dependent upper bounds for grobner bases. arXiv preprint arXiv:1705.02776 (2017). https://arxiv.org/abs/1705.02776
Kleinjung, T., et al.: Factorization of a 768-bit RSA modulus. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_18
Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
Kusaka, T., et al.: Solving 114-bit ECDLP for a barreto-naehrig curve. In: Kim, H., Kim, D.-C. (eds.) ICISC 2017. LNCS, vol. 10779, pp. 231–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78556-1_13
Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31
Petit, C., Kosters, M., Messeng, A.: Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 3–18. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_1
Pollard, J.M.: Monte Carlo methods for index computation (mod \(p\)). Math. Comput. 32(143), 918–924 (1978)
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves. Comment. Math. Univ. Sancti Pauli 47(1), 81–92 (1998)
Semaev, I.A.: Evaluation of discrete logarithms in a group of \(p\)-torsion points of an elliptic curve in characteristic \(p\). Math. Comput. 67(221), 353–356 (1998)
Semaev, I.A.: Summation polynomials and the discrete logarithm problem on elliptic curves. IACR Cryptology ePrint Archive 2004/031 (2004)
Semaev, I.A.: New algorithm for the discrete logarithm problem on elliptic curves. IACR Cryptology eprint Archive 2015/310 (2015)
Shanks, D.: Class number, a theory of factorization, and genera. In: Proceedings of Symposium of Pure Mathematics, vol. 20, pp. 41–440 (1971)
Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 106, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09494-6
Smart, N.P.: The discrete logarithm problem on elliptic curves of trace one. J. Cryptol. 12(3), 193–196 (1999)
Wenger, E., Wolfger, P.: Solving the discrete logarithm of a 113-bit Koblitz curve with an FPGA cluster. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 363–379. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-4_22
Yasuda, M., Shimoyama, T., Kogure, J., Izu, T.: Computational hardness of IFP and ECDLP. Appl. Algebra Eng. Commun. Comput. 27(6), 493–521 (2016)
Yokota, Y., Kudo, M., Yasuda, M.: Practical limit of index calculus algorithms for ECDLP over prime fields. In: International Workshop on Coding and Cryptography-WCC 2017 (2017). http://wcc2017.suai.ru/proceedings.html
Acknowledgments
This work was supported by JST CREST Grant Number JPMJCR14D6, Japan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Kudo, M., Yokota, Y., Takahashi, Y., Yasuda, M. (2018). Acceleration of Index Calculus for Solving ECDLP over Prime Fields and Its Limitation. In: Camenisch, J., Papadimitratos, P. (eds) Cryptology and Network Security. CANS 2018. Lecture Notes in Computer Science(), vol 11124. Springer, Cham. https://doi.org/10.1007/978-3-030-00434-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-00434-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00433-0
Online ISBN: 978-3-030-00434-7
eBook Packages: Computer ScienceComputer Science (R0)