Skip to main content

Secret Sharing Schemes for (kn)-Consecutive Access Structures

  • Conference paper
  • First Online:
Book cover Cryptology and Network Security (CANS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11124))

Included in the following conference series:

Abstract

We consider access structures over a set \(\mathcal {P}\) of n participants, defined by a parameter k with \(1 \le k \le n\) in the following way: a subset is authorized if it contains participants \(i,i+1,\ldots ,i+k-1\), for some \(i \in \{1,\ldots ,n-k+1\}\). We call such access structures, which may naturally appear in real applications involving distributed cryptography, (kn)-consecutive.

We prove that these access structures are only ideal when \(k=1,n-1,n\). Actually, we obtain the same result that has been obtained for other families of access structures: being ideal is equivalent to being a vector space access structure and is equivalent to having an optimal information rate strictly bigger than \(\frac{2}{3}\). For the non-ideal cases, we give either the exact value of the optimal information rate, for \(k=n-2\) and \(k=n-3\), or some bounds on it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beimel, A., Tassa, T., Weinreb, E.: Characterizing ideal weighted threshold secret sharing. SIAM J. Discret. Math. 22(1), 360–397 (2008)

    Article  MathSciNet  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conference Proceedings, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  3. Blundo, C., De Santis, A., De Simone, R., Vaccaro, U.: Tight bounds on the information rate of secret sharing schemes. Des. Codes Cryptogr. 11(2), 107–122 (1997)

    Article  MathSciNet  Google Scholar 

  4. Blundo, C., De Santis, A., Stinson, D.R., Vaccaro, U.: Graph decompositions and secret sharing schemes. J. Cryptol. 8(1), 39–64 (1995)

    Article  MathSciNet  Google Scholar 

  5. Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4, 123–134 (1991)

    MATH  Google Scholar 

  6. Csirmaz, L., Tardos, G.: Optimal information rate of secret sharing schemes on trees. IEEE Trans. Inf. Theory 59(4), 2527–2530 (2013)

    Article  MathSciNet  Google Scholar 

  7. Di Crescenzo, G., Galdi, C.: Hypergraph decomposition and secret sharing. Discret. Appl. Math. 157(5), 928–946 (2009)

    Article  MathSciNet  Google Scholar 

  8. Farràs, O., Kaced, T., Martín, S., Padró, C.: Improving the linear programming technique in the search for lower bounds in secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 597–621. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_22

    Chapter  MATH  Google Scholar 

  9. Farràs, O., Martí-Farré, J., Padró, C.: Ideal multipartite secret sharing schemes. J. Cryptol. 25(3), 434–463 (2012)

    Article  MathSciNet  Google Scholar 

  10. Farràs, O., Padró, C.: Ideal hierarchical secret sharing schemes. IEEE Trans. Inf. Theory 58(5), 3273–3286 (2012)

    Article  MathSciNet  Google Scholar 

  11. Herranz, J., Sáez, G.: New results on multipartite access structures. IET Proc. Inf. Secur. 153(4), 153–162 (2006)

    Article  Google Scholar 

  12. Jackson, W.A., Martin, K.M.: Geometric secret sharing schemes and their duals. Des. Codes Cryptogr. 4(1), 83–95 (1994)

    Article  MathSciNet  Google Scholar 

  13. Jackson, W.A., Martin, K.M.: Perfect secret sharing schemes on five participants. Des. Codes Cryptogr. 9(3), 267–286 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Juels, A., Pappu, R., Parno, B.: Unidirectional key distribution across time and space with applications to RFID security. In: Proceedings of the USENIX Security Symposium 2008, pp. 75–90 (2008)

    Google Scholar 

  15. Martí-Farré, J., Padró, C.: Secret sharing schemes on sparse homogeneous access structures with rank three. Electron. J. Comb. 11(1), 72 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Martí-Farré, J., Padró, C.: Secret sharing schemes with three or four minimal qualified subsets. Des. Codes Cryptogr. 34(1), 17–34 (2005)

    Article  MathSciNet  Google Scholar 

  17. Martí-Farré, J., Padró, C.: Secret sharing schemes on access structures with intersection number equal to one. Discret. Appl. Math. 154(3), 552–563 (2006)

    Article  MathSciNet  Google Scholar 

  18. Martín, A., Pereira, J., Rodríguez, G.: A secret sharing scheme based on cellular automata. Appl. Math. Comput. 170(2), 1356–1364 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inf. Theory 46(7), 2596–2604 (2000)

    Article  MathSciNet  Google Scholar 

  20. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  21. Stinson, D.R.: Decomposition constructions for secret sharing schemes. IEEE Trans. Inf. Theory 40(1), 118–125 (1994)

    Article  MathSciNet  Google Scholar 

  22. Tassa, T.: Hierarchical threshold secret sharing. J. Cryptol. 20(2), 237–264 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by Spanish Ministry of Economy and Competitiveness, under Project MTM2016-77213-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Herranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herranz, J., Sáez, G. (2018). Secret Sharing Schemes for (kn)-Consecutive Access Structures. In: Camenisch, J., Papadimitratos, P. (eds) Cryptology and Network Security. CANS 2018. Lecture Notes in Computer Science(), vol 11124. Springer, Cham. https://doi.org/10.1007/978-3-030-00434-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00434-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00433-0

  • Online ISBN: 978-3-030-00434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics