Skip to main content

Handling Uncertainty in Relational Databases with Possibility Theory - A Survey of Different Modelings

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11142))

Included in the following conference series:

Abstract

Mainstream approaches to uncertainty modeling in relational databases are probabilistic. Still some researchers persist in proposing representations based on possibility theory. They are motivated by the ability of this latter setting for modeling epistemic uncertainty and by its qualitative nature. Interestingly enough, several possibilistic models have been proposed over time, and have been motivated by different application needs ranging from database querying, to database design and to data cleaning. Thus, one may distinguish between four different frameworks ordered here according to an increasing representation power: databases with (i) layered tuples; (ii) certainty-qualified attribute values; (iii) attribute values restricted by general possibility distributions; (iv) possibilistic c-tables. In each case, we discuss the role of the possibility-necessity duality, the limitations and the benefit of the representation settings, and their suitability with respect to different tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Then the attribute value, or more generally the disjunction of possible values is/are considered as fully possible, while any other value in the attribute domain is all the less possible as the certainty level is higher. In case of full certainty these other values are all impossible. This is a particular case of the certainty qualification of a fuzzy set, here reduced to a singleton, or in any case to a classical subset. There are other basic qualifications of a fuzzy set in possibility theory, for instance in terms of guaranteed possibility (rather than in terms of necessity as in certainty qualification), or which lead to enlarge the core, or to reduce the support of the fuzzy set, see [7] for the four canonic transformations; see also [20] for hybrid transformations combining enlargement with uncertainty.

  2. 2.

    For example, assume Peter has two ages, each with a certainty level, the levels being denoted by \(\alpha \) and \(\beta \) respectively. Then the FD name \(\rightarrow \) age is violated with a certainty degree that is equal to \(\min (\alpha ,\,\beta )\).

References

  1. Arrazola, I., Plainfossé, A., Prade, H., Testemale, C.: Extrapolation of fuzzy values from incomplete data bases. Inf. Syst. 14(6), 487–492 (1989)

    Article  Google Scholar 

  2. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)

    Google Scholar 

  3. Bosc, P., Pivert, O.: About projection-selection-join queries addressed to possibilistic relational databases. IEEE Trans. Fuzzy Syst. 13(1), 124–139 (2005)

    Article  Google Scholar 

  4. Bosc, P., Prade, H.: An introduction to the fuzzy set and possibility theory-based treatment of flexible queries and uncertain or imprecise databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems. From Needs to Solutions, pp. 285–324. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  Google Scholar 

  5. De Tré, G., De Caluwe, R.M.M., Prade, H.: Null values in fuzzy databases. J. Intell. Inf. Syst. 30(2), 93–114 (2008)

    Article  Google Scholar 

  6. Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic: semantics, belief revision, and variable certainty weights. IEEE Trans. Knowl. Data Eng. 6, 64–71 (1994)

    Article  Google Scholar 

  7. Dubois, D., Prade, H.: What are fuzzy rules and how to use them. Fuzzy Sets Syst. 84(2), 169–185 (1996)

    Article  MathSciNet  Google Scholar 

  8. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In: Gabbay, D.M., Smets, P. (eds.) Quantified Representation of Uncertainty and Imprecision. Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1, pp. 169–226. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  9. Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. Fuzzy Sets Syst. 160(10), 1355–1366 (2009)

    Article  MathSciNet  Google Scholar 

  10. Dubois, D., Prade, H.: A glance at causality theories for artificial intelligence. In: A Guided Tour of Artifial Intelligence, vol. 1: Knowledge Representation, Reasoning and Learning. Springer (2018)

    Google Scholar 

  11. Dubois, D., Prade, H., Schockaert, S.: Generalized possibilistic logic: foundations and applications to qualitative reasoning about uncertainty. Artif. Intell. 252, 139–174 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hall, N., Köhler, H., Link, S., Prade, H., Zhou, X.: Cardinality constraints on qualitatively uncertain data. Data Knowl. Eng. 99, 126–150 (2015)

    Article  Google Scholar 

  13. Ilyas, I.F., Chu, X.: Trends in cleaning relational data: consistency and deduplication. Found. Trends Databases 5(4), 281–393 (2015)

    Article  Google Scholar 

  14. Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. ACM 31(4), 761–791 (1984)

    Article  MathSciNet  Google Scholar 

  15. Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 181–195. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_13

    Chapter  Google Scholar 

  16. Köhler, H., Link, S.: Qualitative cleaning of uncertain data. In: Mukhopadhyay, S., et al. (eds.) Proceedings of the 25th ACM International Conference on Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, 24–28 October 2016, pp. 2269–2274. ACM (2016)

    Google Scholar 

  17. Link, S., Prade, H.: Possibilistic functional dependencies and their relationship to possibility theory. IEEE Trans. Fuzzy Syst. 24(3), 757–763 (2016)

    Article  Google Scholar 

  18. Link, S., Prade, H.: Relational database schema design for uncertain data. In: Mukhopadhyay, S., et al. (eds.) Proceedings of the 25th ACM International conference on Information and Knowledge Management, CIKM 2016, Indianapolis, 24–28 October, pp. 1211–1220 (2016)

    Google Scholar 

  19. Meliou, A., Roy, S., Suciu, D.: Causality and explanations in databases. PVLDB 7(13), 1715–1716 (2014)

    Google Scholar 

  20. González, A., Marín, N., Pons, O., Vila, M.A.: Qualification of fuzzy statements under fuzzy certainty. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 162–170. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72950-1_17

    Chapter  MATH  Google Scholar 

  21. Pivert, O., Prade, H.: Detecting suspect answers in the presence of inconsistent information. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS, vol. 7153, pp. 278–297. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28472-4_16

    Chapter  Google Scholar 

  22. Pivert, O., Prade, H.: Querying uncertain multiple sources. In: Straccia, U., Calì, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp. 286–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5_24

    Chapter  Google Scholar 

  23. Pivert, O., Prade, H.: A certainty-based model for uncertain databases. IEEE Trans. Fuzzy Syst. 23(4), 1181–1196 (2015)

    Article  Google Scholar 

  24. Pivert, O., Prade, H.: Database querying in the presence of suspect values. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds.) ADBIS 2015. CCIS, vol. 539, pp. 44–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23201-0_6

    Chapter  Google Scholar 

  25. Pivert, O., Prade, H.: Possibilistic conditional tables. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 42–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30024-5_3

    Chapter  Google Scholar 

  26. Prade, H.: Lipski’s approach to incomplete information databases restated and generalized in the setting of Zadeh’s possibility theory. Inf. Syst. 9(1), 27–42 (1984)

    Article  Google Scholar 

  27. Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incompleteuncertain information and vague queries. Inf. Sci. 34, 115–143 (1984)

    Article  Google Scholar 

  28. Roblot, T.K., Link, S.: Possibilistic cardinality constraints and functional dependencies. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 133–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_11

    Chapter  Google Scholar 

  29. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2011)

    MATH  Google Scholar 

  30. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pivert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pivert, O., Prade, H. (2018). Handling Uncertainty in Relational Databases with Possibility Theory - A Survey of Different Modelings. In: Ciucci, D., Pasi, G., Vantaggi, B. (eds) Scalable Uncertainty Management. SUM 2018. Lecture Notes in Computer Science(), vol 11142. Springer, Cham. https://doi.org/10.1007/978-3-030-00461-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00461-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00460-6

  • Online ISBN: 978-3-030-00461-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics