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Abstract. In this paper, we present a black-box attack against API
call based machine learning malware classifiers, focusing on generating
adversarial sequences combining API calls and static features (e.g., print-
able strings) that will be misclassified by the classifier without affecting
the malware functionality. We show that this attack is effective against
many classifiers due to the transferability principle between RNN vari-
ants, feed forward DNNs, and traditional machine learning classifiers
such as SVM. We also implement GADGET, a software framework to
convert any malware binary to a binary undetected by malware classi-
fiers, using the proposed attack, without access to the malware source
code.

1 Introduction

Machine learning malware classifiers, in which the model is trained on features
extracted from the analyzed file, have two main advantages over current signa-
ture based/black list classifiers: 1) Automatically training the classifier on new
malware samples saves time and expense, compared to manually analyzing new
malware variants. 2) Generalization to currently unseen and unsigned threats
is better when the classifier is based on features and not on a fingerprint of a
specific and exact file (e.g., a file’s hash).

Next generation anti-malware products, such as Cylance, CrowdStrike, and
Sophos, use machine and deep learning models instead of signatures and heuris-
tics. Those models can be evaded and in this paper, we demonstrate an evasive
end-to-end attack, generating a malware binary that can be executed while not
being detected by such machine learning malware classifiers.

Application programming interface (API) calls, often used to characterize
the behavior of a program, are a common input choice for a classifier and used
by products such as SentinelOne. Since only the sequence of API calls gives each
API call its context and proper meaning, API call sequence based classifiers
provide state of the art detection performance ([9]).

Machine learning classifiers and algorithms are vulnerable to different kinds of
attacks aimed at undermining the classifier’s integrity, availability, etc. One such
attack is based on the generation of adversarial examples which are originally
correctly classified inputs that are perturbed (modified) so they (incorrectly)
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get assigned a different label. In this paper, we demonstrate an attack like this
on binary classifiers that are used to differentiate between malicious and benign
API call sequences. In our case, the adversarial example is a malicious API call
sequence, originally correctly classified, which is classified by the classifier as
benign (a form of evasion attack) after the perturbation (which does not affect
the malware functionality).

Generating adversarial examples for API sequences differs from generating
adversarial examples for images [2], which is the main focus of the existing
research, in two respects: 1) API sequences consist of discrete symbols with
variable lengths, while images are represented as matrices with fixed dimensions,
and the values of the matrices are continuous. 2) In adversarial API sequences
one must verify that the original functionality of the malware remains intact.
Attacks against RNN variants exist ([7,12]), but they are not practical attacks,
in that they don’t verify the functionality of the modified samples or handle API
call arguments and non-sequence features, etc. The differences from our attack
are specified in Section 2.

The contributions of our paper are as follows:

1. We implement a novel end-to-end black-box method to generate adversarial
examples for many state of the art machine learning malware classifiers.
This is the first attack to be evaluated against RNN variants (like LSTM),
feed forward DNNs, and traditional machine learning classifiers (such as
SVM). We test our implementation on a large dataset of 500,000 malware
and benign samples.

2. Unlike previous papers that focus on images, we focus on the cyber security
domain. We implement GADGET, an evasion framework generating a new
malware binary with the perturbed features without access to the malware
source code that allows us to verify that the malicious functionality remains
intact.

3. Unlike previous papers, we extend our attack to bypass multi-feature (e.g.,
static and dynamic features) based malware classifiers, to fit real world sce-
narios.

4. We focus on the principle of transferability in RNN variants. To the best
of our knowledge, this is the first time it has been evaluated in the context
of RNNs and in the cyber security domain, proving that the proposed at-
tack is effective against the largest number of classifiers ever reviewed in a
single study: RNN, LSTM, GRU, and their bidirectional and deep variants,
and feed forward DNN, 1D CNN, SVM, random forest, logistic regression,
GBDT, etc.

2 Background and Related Work

Most black-box attacks rely on the concept of adversarial example transferability
[18]: Adversarial examples crafted against one model are also likely to be effective
against other models, even when the models are trained on different datasets.
This means that the adversary can train a surrogate model, which has decision
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boundaries similar to the original model, and perform a white-box attack on
it. Adversarial examples that successfully fool the surrogate model are likely to
fool the original model as well [11]. A different approach uses the confidence
score of the targeted DNN to estimate its gradients directly instead of using
the surrogate model’s gradients to generate adversarial examples [3]. However,
attacker knowledge of confidence scores (not required by our attack) is unlikely in
black-box scenarios. Decision based attack, which uses only the target classifier’s
classes, without the confidence score, result in lower attack effectiveness and
higher overhead [17].

In mimicry attacks, an attacker is able to code a malicious exploit that mim-
ics the system calls’ trace of benign code, thus evading detection [21]. Several
methods were presented: 1) Disguise attacks - Causing benign system calls to
generate malicious behavior by modifying only the system calls’ parameters. 2)
No-op Attacks - Adding semantic no-ops - system calls with no effect, or those
with an irrelevant effect, e.g., opening a non-existent file. 3) Equivalence attack
- Using a different system call sequence to achieve the same (malicious) effect.

The search for adversarial examples can be formalized as a minimization
problem [18]:

argr min f(x + r) 6= f(x) s.t. x + r ∈ D (1)

The input x, correctly classified by the classifier f , is perturbed with r such that
the resulting adversarial example x + r remains in the input domain D, but is
assigned a different label than x.

A substitute model was trained with inputs generated by augmenting the
initial set of representative inputs with their FGSM [4] perturbed variants, and
then the substitute model was used to craft adversarial samples [11]. This differs
from our paper in that: 1) It deals only with convolutional neural networks, as
opposed to all state of the art classifiers, including RNN variants. 2) It deals
with images and doesn’t fit the attack requirements of the cyber security do-
main, i.e., not harming the malware functionality. 3) No end-to-end framework
to implement the attack in the cyber-security domain was presented.

A white-box evasion technique for an Android static analysis malware clas-
sifier was implemented using the gradients to find the element whose addition
would cause the maximum change in the benign score, and add this feature to
the adversarial example [5]. In contrast to our work, this paper didn’t deal with
RNNs or dynamic features which are more challenging to add without harming
the malware functionality. This study also did not focus on a generic attack that
can affect many types of classifiers, as we do. Finally, our black-box assump-
tion is more feasible than a white-box assumption. In Section 5.3 we created a
black-box variant of this attack.

API call uni-grams were used as static features, as well [6]. A generative ad-
versarial network (GAN) was trained to generate adversarial samples that would
be classified as benign by the discriminator which uses labels from the black-box
model. This attack doesn’t fit sequence based malware classifiers (LSTM, etc.).
In addition, the paper does not present a end-to-end framework which preserves
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the code’s functionality. Finally, GANs are known for their unstable training
process [1], making such an attack method hard to rely on.

A white-box adversarial example attack against RNNs, demonstrated against
LSTM architecture, for sentiment classification of a movie reviews dataset was
shown in [12]. The adversary iterates over the movie review’s words x[i] in the
review and modifies it as follows:

x[i] = arg min
z
||sign(x[i]− z)− sign(Jf (x)[i, f(x)])|| s.t. z ∈ D (2)

where f(x) is the original model label for x, and Jf (x)[i, j] =
∂fj
∂xi

(x). This
differs from our paper in that: 1) We present a black-box attack, not a white-
box attack. 2) We implement a practical cyber domain attack. For instance, we
don’t modify existing API calls, because while such an attack is relevant for
reviews - it might damage a malware functionality which we wish to avoid. 3)
We deal with multiple-feature classifiers, as in real world malware classifiers. 4)
Our attack has better performance, as shown in Section 4.3.

Concurrently and independently from our work, a RNN GAN to generate
invalid APIs and insert them into the original API sequences was proposed
[7]. Gumbel-Softmax, a one-hot continuous distribution estimator, was used to
deliver gradient information between the generative RNN and the substitute
RNN. Null APIs were added, but while they were omitted to make the generated
adversarial sequence shorter, they remained in the gradient calculation of the
loss function. This decreases the attack effectiveness compared to our method
(88% vs. 99.99% using our method, for an LSTM classifier). In contrast, our
attack method doesn’t have this difference between the substitute model and
the black-box model, and our generated API sequences are shorter. This also
makes our adversarial example faster. Unlike [7], which only focused on LSTM
variants, we also show our attack’s effectiveness against other RNN variants
such as GRUs and conventional RNNs, bidirectional and deep variants, and non-
RNN classifiers (including both feed forward networks and traditional machine
learning classifiers such as SVM), making it truly generic. Moreover, the usage
of Gumbel-Softmax approximation in [7] makes this attack limited to one-hot
encoded inputs, while in our attack, any word embedding can be used, making
it more generic. In addition, the stability issues associated with GAN training
[1], which might not converge for specific datasets, apply to the attack method
mentioned in [7] as well, making it hard to rely on. While such issues might
not be visible when using a small dataset (180 samples in [7]), they become
more apparent when using larger datasets like ours (500,000 samples). Finally,
we developed an end-to-end framework, generating a mimicry attack (Section
5). While previous works inject arbitrary API call sequences that might harm
the malware functionality (e.g., by inserting the ExitProcess() API call in the
middle of the malware code), our attack modifies the code such that the original
functionality of the malware is preserved (Section 5.1). Moreover, our approach
works in real world scenarios including hybrid classifiers/multiple feature types
(Section 5.3) and API arguments (Section 5.2), non of which is addressed by [7].
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3 Methodology

3.1 Black-Box API Call Based Malware Classifier

Our classifier’s input is a sequence of API calls made by the inspected code. In
this section, it uses only the API call type and not its arguments or return value.
IDSs that verify the arguments tend to be much slower (4-10 times slower, in
[19]). One might claim that considering arguments would make our attack easier
to detect. This could be done, e.g., by looking for irregularities in the arguments
of the API calls (e.g., invalid file handles, etc.) or by considering only successful
API calls and ignoring failed APIs. In order to address this issue, we don’t use
null arguments that would fail the function. Instead, arguments that are valid
but do nothing, such as writing into a temporary file instead of an invalid file
handle, are used in our framework, as described in Section 5. We also discuss an
extension of our attack that handles API call arguments in Section 5.2.

Since API call sequences can be long (some samples in our dataset have
millions of API calls), it is impossible to train on the entire sequence at once
due to GPU memory and training time constraints. Thus, we used a sliding
window approach: Each API call sequence is divided into windows with size m.
Detection is performed on each window in turn, and if any window is clas-
sified as malicious, the entire sequence is malicious. This method helps de-
tect cases like malicious payloads injected into goodware (e.g., using Metas-
ploit), where only a small subset of the sequence is malicious. We use one-
hot encoding for each API call type in order to cope with the limitations of
sklearn’s implementation of decision trees and random forests, as mentioned in
https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-
your-random-forests/. The output of each classifier is binary (is the inspected
code malicious or not). The tested classifiers and their hyper parameters are
described in Section 4.2.

3.2 Black-Box API Call Based Malware Classifier Attack

The proposed attack has two phases: 1) creating a surrogate model using the tar-
get classifier as a black-box model, and 2) generating adversarial examples with
white-box access to the surrogate model and using them against the attacked
black-box model, by the transferability property.

Creating a Surrogate Model We use Jacobian-based dataset augmentation,
an approach similar to [11]. The method is specified in Algorithm 1.

We query the black-box model with synthetic inputs selected by a Jacobian-
based heuristic to build a surrogate model f̂ , approximating the black-box model
f ’s decision boundaries. While the adversary is unaware of the architecture of
the black-box model, we assume the basic features used (the recorded API call
types) are known to the attacker. In order to learn decision boundaries similar to
the black-box model while minimizing the number of black-box model queries,
the synthetic training inputs are based on prioritizing directions in which the

https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/
https://roamanalytics.com/2016/10/28/are-categorical-variables-getting-lost-in-your-random-forests/
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model’s output varies. This is done by evaluating the sign of the Jacobian matrix
dimension corresponding to the label assigned to input x by the black-box model,
sign(Jf̂ (x)[f(x)]), as calculated by FGSM ([4]). We use the Jacobian matrix of
the surrogate model, since we don’t have access to the Jacobian matrix of the
black-box model. The new synthetic data point x + εsign(Jf̂ (x)[f(x)]) is added
to the training set.

Algorithm 1 Surrogate Model Training

Input: f (black-box model), T (training epochs), X1(initial dataset), ε (perturbation
factor)

Define architecture for the surrogate model A
for t=1..T:

Dt = {(x, f(x))|x ∈ Xt} # Label the synthetic dataset using the black-box model
f̂t = train(A,Dt) # (Re-)Train the surrogate model
Xt+1 =

{
x + εsign(Jf̂t(x)[f(x)])|x ∈ Xt

}
∪Xt # Perform Jacobian-based dataset

augmentation
return f̂T

On each iteration we add a synthetic example to each existing sample. The
surrogate model dataset size is: |Xt| = 2t−1|X1|

The samples used in the initial dataset, X1, were randomly selected from the
test set distribution, but they were not included in the training and test sets to
prevent bias. X1 should be representative so the dataset augmentation covers all
decision boundaries to increase the augmentation’s effectiveness. For example,
if we only include samples from a single family of ransomware in the initial
dataset, we will only be focusing on a specific area of the decision boundary, and
our augmentation would likely only take us in a certain direction. However, as
shown in Section 4.3, this doesn’t mean that all of the malware families in the
training set must be represented to achieve good performance.

Generating Adversarial Examples An adversarial example is a sequence of
API calls classified as malicious by the classifier that is perturbed by the addition
of API calls, so that the modified sequence will be misclassified as benign. In
order to prevent damaging the code’s functionality, we cannot remove or modify
API calls; we can only add additional API calls. In order to add API calls in
a way that doesn’t hurt the code’s functionality, we generate a mimicry attack
(Section 5). Our attack is described in Algorithm 2.

D is the vocabulary of available features, that is, the API calls recorded by
the classifier. The adversarial API call sequence length of l might be different
than n, the length of the sliding window API call sequence that is used by the
adversary. Therefore, like the prediction, the attack is performed sequentially on⌈

l
n

⌉
windows of n API calls. Note that the knowledge of m (the window size

of the classifier, mentioned in Section 3.1) is not required, as shown in Section
4.3. ⊥ is the concatenation operation. w∗

j [1 : i− 1] ⊥ api ⊥ w∗
j [i : n− 1] is the
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Algorithm 2 Adversarial Sequence Generation

Input: f (black-box model), f̂ (surrogate model), x (malicious sequence to perturb,
of length l), n (size of adversarial sliding window), D (vocabulary)

for each sliding window wj of n API calls in x:
wj

∗ = wj

while f(w∗
j ) = malicious:

Randomly select an API’s position i in w
# Insert a new adversarial API in position i ∈ {1..n}:
w∗

j [i] = arg minapi ||sign(wj
∗ − w∗

j [1 : i − 1] ⊥ api ⊥ w∗
j [i : n − 1]) −

sign(Jf̂ (wj)[f(wj)])||
Replace wj (in x) with wj

∗

return (perturbed) x

insertion of the encoded API vector in position i of w∗
j . The adversary randomly

chooses i since he/she does not have any way to better select i without incurring
significant statistical overhead. Note that an insertion of an API in position
i means that the APIs from position i..n (w∗

j [i : n] ) are “pushed back” one
position to make room for the new API call, in order to maintain the original
sequence and preserve the original functionality of the code. Since the sliding
window has a fixed length, the last API call, w∗

j [n], is “pushed out” and removed
from w∗

j (this is why the term is ⊥ w∗
j [i : n − 1], as opposed to ⊥ w∗

j [i : n]).
The APIs “pushed out” from wj will become the beginning of wj+1, so no API
is ignored.

The newly added API call is w∗
j [i] = arg minapi ||sign(wj

∗ − w∗
j [0 : i] ⊥

api ⊥ w∗
j [i : n − 1]) − sign(Jf̂ (wj)[f(wj)])||. sign(Jf̂ (wj)[f(wj)]) gives us

the direction in which we have to perturb the API call sequence in order to
reduce the probability assigned to the malicious class, f(x), and thus change
the predicted label of the API call sequence. However, the set of legitimate API
call embeddings is finite. Thus, we cannot set the new API to any real value.
We therefore find the API call api in D whose insertion directs us closest to the
direction indicated by the Jacobian as most impactful on the model’s prediction.
We iteratively apply this heuristic until we find an adversarial input sequence
misclassified as benign. Note that in [12] the authors replaced a word in a movie
review, so they only needed a single element from the Jacobian (for word i, which
was replaced). All other words remained the same, so no gradient change took
place. In contrast, since we add an API call, all of the API calls following it shift
their position, so we consider the aggregated impact.

While the proposed attack is designed for API call based classifiers, it can
be generalized to any adversarial sequence generation. This generalization is a
high performance in terms of attack effectiveness and overhead (Equations 4
and 5). This can be seen in Section 4.3, where we compare the proposed attack
to [12] for the IMDB sentiment classification task. In Section 4.4 we show why
the same adversarial examples generated against the surrogate model would be
effective against both the black-box model and other types of classifiers due to
the principle of transferability.
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We assume that the attacker knows what API calls are available and how
each of them is encoded (one-hot encoding in this paper). This is a commonly
accepted assumption about the attacker’s knowledge [8].

4 Experimental Evaluation

4.1 Dataset

Our dataset contains 500,000 files (250,000 benign samples and 250,000 malware
samples), including the latest variants. We have ransomware families such as Cer-
ber, Locky, Ramnit, Matsnu, Androm, Upatre, Delf, Zbot, Expiro, Ipamor. and
other malware types (worms, backdoors, droppers, spyware, PUA, and viruses),
each with the same number of samples, to prevent a prediction bias towards
the majority class. 80% of the malware families’ (like the Virut virus family)
samples were distributed between the training and test sets, to determine the
classifier’s ability to generalize to samples from the same family. 20% of the
malware families (such as the WannaCry ransomware family) were used only on
the test set to assess generalization to an unseen malware family. The temporal
difference between the training set and the test set is several months (meaning
all test set samples are newer than the training set samples), based on Virus-
Total’s ’first seen’ date. We labeled our dataset using VirusTotal, an on-line
scanning service which contains more than 60 different security products. Our
ground truth is that a malicious sample is one with 15 or more positive (i.e.,
malware) classifications from the 60 products. A benign sample is one with zero
positive classifications. All samples with 1-14 positives were omitted to prevent
false positive contamination of the dataset.

We ran each sample in Cuckoo Sandbox, a commonly-used malware anal-
ysis system, for two minutes per sample.1 We parsed the JSON file generated
by Cuckoo Sandbox and extracted the API call sequences generated by the in-
spected code during its execution. The extracted API call sequences are the
malware classifier’s features. Although the JSON can be used as raw input for
a neural network classifier (as done in [16]), we parsed it, since we wanted to fo-
cus only on API calls without adding other features, such as connected network
addresses, which are also extracted by Cuckoo Sandbox.

The overview of the malware classification process is shown in Figure 1.
Figure 2(a) present a more detailed view of the classifier’s structure.

We run the samples on a VirtualBox’s snapshot with Windows 8.1 OS,2 since
most malware target the Windows OS.

1 Tracing only the first seconds of a program execution might not detect certain mal-
ware types, like “logic bombs” that commence their malicious behavior only after
the program has been running some time. However, this can be mitigated both by
classifying the suspension mechanism as malicious, if accurate, or by tracing the code
operation throughout the program execution life-time, not just when the program
starts.

2 While it is true that the API calls sequence would vary across different OSs or con-
figurations, both the black-box classifier and the surrogate model generalize across

https://www.virustotal.com/
https://www.virtualbox.org/
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Fig. 1: Overview of the Malware Classification Process

Cuckoo Sandbox is a tool known to malware writers, some of whom write code
to detect if the malware is running in a Cuckoo Sandbox (or on virtual machines)
and if so, the malware quit immediately to prevent reversing efforts. In those
cases, the file is malicious, but its behavior recorded in Cuckoo Sandbox (its API
call sequence) isn’t malicious, due to its anti-forensic capabilities. To mitigate
such contamination of our dataset, we used two countermeasures: 1) We applied
YARA rules to find samples trying to detect sandbox programs such as Cuckoo
Sandbox and omitted all such samples. 2) We considered only API call sequences
with more than 15 API calls (as in [13]), omitting malware that, e.g., detect a VM
and quit. This filtering left us with about 400,000 valid samples, after balancing
the benign samples number. The final training set size is 360,000 samples, 36,000
of which serve as the validation set. The test set size is 36,000 samples. All sets
are balanced between malicious and benign samples. One might argue that the
evasive malware that apply such anti-VM techniques are extremely challenging
and relevant. However, in this paper we focus on the adversarial attack. This
attack is generic enough to work for those evasive malware as well, assuming
that other mitigation techniques (e.g., anti-anti-VM), would be applied.

4.2 Malware Classifier Performance

No open source or commercial trail versions of API calls based deep learning
intrusion detection systems are available, as such products target enterprises.
Dynamic models are not available in VirusTotal as well. Therefore, we created
our own black-box malware classifiers. This also allows us to evaluate the attack
effectiveness (Equation 4) against many classifier types.

. We limited our maximum input sequence length to m = 140 API calls
(longer sequence lengths, e.g., m = 1000, had no effect on the accuracy) and
padded shorter sequences with zeros. A zero stands for a null API in our one-
hot encoding. Longer sequences are split into windows of m API calls, and each
window is classified in turn. If any window is malicious the entire sequence
is considered malicious. Thus, the input of all of the classifiers is a vector of
m = 140 API call types in one-hot encoding, using 314 bits, since there were 314
monitored API call types in the Cuckoo reports for our dataset. The output is a
binary classification: malicious or benign. An overview of the LSTM architecture
is shown in Figure 2(a).

those differences, as they capture the “main features” over the sequence, which are
not vary between OSs.

https://github.com/Yara-Rules/rules
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(a) Dynamic Classifier Architecture (b) Hybrid Classifier Architecture

Fig. 2: Classifier Architecture Overview

We used the Keras implementation for all neural network classifiers, with
TensorFlow used for the back end. XGBoost and Scikit-Learn were used for all
other classifiers.

The loss function used for training was binary cross-entropy. We used the
Adam optimizer for all of the neural networks. The output layer was fully-
connected with sigmoid activation for all NNs. We fine-tuned the hyper param-
eters for all classifiers based on the relevant state of the art papers, e.g., window
size from [13], number of hidden layers from [9] and [5], dropout rate from [9], and
number of trees in a random forest classifier and the decision tree splitting crite-
ria from [15]. For neural networks, a rectified linear unit, ReLU(x) = max(0, x),
was chosen as an activation function for the input and hidden layers due to
its fast convergence compared to sigmoid() or tanh(), and dropout was used
to improve the generalization potential of the network. Training was conducted
for a maximum of 100 epochs, but convergence was usually reached after 15-20
epochs, depending on the type of classifier. Batch size of 32 samples was used.

The classifiers also have the following classifier-specific hyper parameters:
DNN - Two fully-connected hidden layers of 128 neurons, each with ReLU ac-
tivation and a dropout rate of 0.2; CNN - 1D ConvNet with 128 output filters,
stride length of one, 1D convolution window size of three and ReLU activation,
followed by a global max pooling 1D layer and a fully connected layer of 128
neurons with ReLU activation and a dropout rate of 0.2; RNN, LSTM, GRU,
BRNN, BLSTM, bidirectional GRU - a hidden layer of 128 units, with a dropout
rate of 0.2 for both inputs and recurrent states; Deep LSTM and BLSTM - Two
hidden layers of 128 units, with a dropout rate of 0.2 for both inputs and re-
current states in both layers; Linear SVM and logistic regression classifiers - A
regularization parameter C=1.0 and L2 norm penalty; Random forest classifier
- Using 10 decision trees with unlimited maximum depth and the Gini criteria
for choosing the best split; Gradient boosted decision tree - Up to 100 decision
trees with a maximum depth of 10 each.

https://keras.io/
https://github.com/dmlc/xgboost/
http://scikit-learn.org/stable/
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We measured the performance of the classifiers using the accuracy ratio,
which applies equal weight to both FP and FN (unlike precision or recall),
thereby providing an unbiased overall performance indicator:

accuracy =
TP + TN

TP + FP + TN + FN
(3)

where: TP are true positives (malicious samples classified as malicious by the
black-box classifier), TN are true negatives, FP stands for false positives (benign
samples classified as malicious), and FN are false negatives. The FP rate of the
classifiers varied between 0.5-1%.3

The performance of the classifiers is shown in Table 1. The accuracy was
measured on the test set, which contains 36,000 samples.

Table 1: Classifier Performance
Classifier Type Accuracy (%) Classifier Type Accuracy (%)

RNN 97.90 Bidirectional GRU 98.04

BRNN 95.58 Fully-Connected DNN 94.70

LSTM 98.26 1D CNN 96.42

Deep LSTM 97.90 Random Forest 98.90

BLSTM 97.90 SVM 86.18

Deep BLSTM 98.02 Logistic Regression 89.22

GRU 97.32 Gradient Boosted Decision Tree 91.10

As can be seen in Table 1, the LSTM variants are the best malware classifiers,
accuracy-wise, and, as shown in Table 2, BLSTM is also one of the classifiers
most resistant to the proposed attack.

.

4.3 Attack Performance

In order to measure the performance of an attack, we consider two factors:
The attack effectiveness is the number of malware samples in the test set

which were detected by the target classifier, for which the adversarial sequences
generated by Algorithm 2 were misclassified by the target malware classifier.

attack effectiveness =
|{f(x) = Malicious ∨ f(x∗) = Benign}|

|{f(x) = Malicious}|
(4)

s.t. x ∈ TestSet(f), f̂T = Algorithm1(f, T,X1, ε),

3 The FP rate was chosen to be on the high end of production systems. A lower FP
rate would mean lower recall either, due-to the trade-off between them, therefore
making our attack even more effective.
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x∗ = Algorithm2(f, f̂T ,x, n,D)

We also consider the overhead incurred as a result of the proposed attack. The
attack overhead is the average percentage of the number of API calls which were
added by Algorithm 2 to a malware sample successfully detected by the target
classifier, in order to make the modified sample classified as benign (therefore
calculated only for successful attacks) by the black-box model:

attack overhead = avg(
added APIs

l
) (5)

The average length of the API call sequence is: avg(l) ≈ 100, 000. The ad-
versary chooses the architecture for the surrogate model without any knowledge
of the target model’s architecture. We chose a GRU surrogate model with 64
units (different from the malware classifiers used in Section 4.2), which has a
shorter training time compared to other RNN variants, e.g., LSTM, which pro-
vides similar attack effectiveness. Besides the classifier’s type and architecture,
we also used a different optimizer for the surrogate model (ADADELTA instead
of Adam). In our implementation, we used the CleverHans library.

Based on Equations 4 and 5, the proposed attack’s performance is specified
in Table 2 (average of three runs).

Table 2: Attack Performance
Classifier Type Attack

Effectiveness
(%)

Additional
API Calls

(%)

Classifier Type Attack Ef-
fectiveness

(%)

Additional
API Calls

(%)

RNN 100.0 0.0023 Bidirectional
GRU

95.33 0.0023

BRNN 99.90 0.0017 Fully-
Connected

DNN

95.66 0.0049

LSTM 99.99 0.0017 1D CNN 100.0 0.0005

Deep LSTM 99.31 0.0029 Random
Forest

99.44 0.0009

BLSTM 93.48 0.0029 SVM 70.90 0.0007

Deep BLSTM 96.26 0.0041 Logistic
Regression

69.73 0.0007

GRU 100.0 0.0016 Gradient
Boosted Tree

71.45 0.0027

We can see in Table 2 that the proposed attack has very high effectiveness
and low attack overhead against all of the tested malware classifiers. The at-
tack effectiveness is lower for traditional machine learning algorithms, such as

https://github.com/tensorflow/cleverhans


Accepted as a conference paper at RAID 2018

SVM, due to the greater difference between the decision boundaries of the GRU
surrogate model and the target classifier. Randomly modifying APIs resulted in
significantly lower effectiveness for all classifiers (e.g., 50.29% for fully-connected
DNN).

As mentioned in Section 4.1, |TestSet(f)| = 36, 000 samples, and the test set
TestSet(f) is balanced, so the attack performance was measured on: |{f(x) =
Malicious|x ∈ TestSet(f)}| = 18, 000 samples. For the surrogate model we used
a perturbation factor of ε = 0.2 and a learning rate of 0.1. |X1| = 70 samples were
randomly selected from the test set of 36,000 samples. We used T = 6 surrogate
epochs. Thus, as shown in Section 3.2, the training set size for the surrogate
model is: |X6| = 25 ∗ 70 = 2240 samples; only 70 (= |X1|) of the samples were
selected from the test set distribution, and all of the others were synthetically
generated. Using lower values, e.g., |X1| = 50 or T = 5, achieved worse attack
performance, while larger values do not improve the attack performance and
result in a longer training time. The 70 samples from the test set don’t cover
all of the malware families in the training set; the effectiveness of the surrogate
model is due to the synthetic data.

For simplicity and training time, we used m = n for Algorithm 2, i.e., the
sliding window size of the adversary is the same as that used by the black-box
classifier. However, even if this is not the case, the attack effectiveness isn’t
degraded significantly. If n > m, the adversary would keep trying to modify
different API calls’ positions in Algorithm 2, until he/she modifies the ones
impacting the black-box classifier as well, thereby increasing the attack overhead
without affecting the attack effectiveness. If n < m, the adversary can modify
only a subset of the API calls affecting the black-box classification, and this
subset might not be diverse enough to affect the classification as desired, thereby
reducing the attack effectiveness. The closer n and m are, the better the attack
performance. For n = 100,m = 140, there is an average decrease of attack
effectiveness from 99.99% to 99.98% for a LSTM classifier.

Comparison to Previous Work Besides [7] which was written concurrently
and independently from our work, [12] is the only recently published RNN ad-
versarial attack. The differences between that attack and the attack addressed
in this paper are mentioned in Section 2. We compared the attacks in terms
of performance. The attack effectiveness for the IMDB dataset was the same
(100%), but our attack overhead was better: 11.25 added words per review (on
average), instead of 51.25 words using the method mentioned in [12].

4.4 Transferability for RNN Models

While transferability was covered in the past in the context of DNNs (e.g., [18]),
to the best of our knowledge, this is the first time it is evaluated in the context
of RNNs, proving that the proposed attack is generic, not just effective against a
specific RNN variant, but is also transferable between RNN variants (like LSTM,
GRU, etc.), feed forward DNNs (including CNNs), and even traditional machine
learning classifiers such as SVM and random forest.
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Two kinds of transferability are relevant to this paper: 1) the adversary can
craft adversarial examples against a surrogate model with a different architecture
and hyper parameters than the target model, and the same adversarial example
would work against both ([11]), and 2) an adversarial example crafted against
one target classifier type might work against a different type of target classifier.

Both forms of transferability are evaluated as follows: 1) As mentioned in
Section 4.3, we used a GRU surrogate model. However, as can be seen in Table
2, the attack effectiveness is high, even when the black-box classifier is not GRU.
Even when the black-box classifier is GRU, the hyper parameters (such as the
number of units and the optimizer) are different. 2) The attack was designed
against RNN variants; however, we tested it and found the attack to be effective
against both feed forward networks and traditional machine learning classifiers,
as can be seen in the last six lines of Table 2. Our attack is therefore effective
against all malware classifiers.

5 GADGET: End-to-End Attack Framework Description

To verify that an attacker can create an end-to-end attack using the proposed
method (Section 3), we implemented GADGET: Generative Api aDversarial
Generic Example by Transferability framework. This is an end-to-end attack
generation framework that gets a black-box classifier (f in Section 3) as an input,
an initial surrogate model training set (X1 in Algorithm 1), and a malware binary
to evade f , and outputs a modified malware binary whose API call sequence is
misclassified by f as benign, generating the surrogate model (f̂ in Algorithm 1)
in the process.

GADGET contains the following components: 1) Algorithms 1 and 2, imple-
mented in Python, using Keras with TensorFlow back end, 2) A C++ Wrapper
to wrap the malware binary and modify its generated API call sequence dur-
ing run time, and 3) A Python script that wraps the malware binary with the
above mentioned wrapper, making it ready to deploy. The components appear
in Figure 3.

Adding API Calls without Damaging Functionality As mentioned in
Section 3.2, we implemented Algorithm 2 using a mimicry attack [21]. We dis-
carded equivalence attacks and disguise attacks (Section 2), since they lack the
flexibility needed to modify every API call, and thus are not robust enough to
camouflage every malware. Therefore, we implemented a no-op attack, adding
APIs which would have no effect on the code’s functionality. Since some API call
monitors (such as Cuckoo Sandbox) also monitor the return value of an API call
and might ignore failed API calls, we decided to implement the API addition
by adding no-op API calls with valid parameters, e.g., reading 0 bytes from a
valid file. This was more challenging to implement than calling APIs with invalid
arguments (e.g., reading from an invalid file handle), since a different implemen-
tation should be used for each API. However, this effort can be done once and
can subsequently be used for every malware, as we’ve done in our framework.
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(a) Malware Binary,
without GADGET

(b) Malware Binary, with GADGET

Fig. 3: Malware Binary, with and without GADGET

This makes detecting those no-op APIs much harder, since the API call runs
correctly, with a return value indicative of success. The functionality validation
of the modified malware is discussed in Section 5.1. Further measures, such as
randomized arguments, can be taken by the attacker to prevent the detection
of the no-op APIs by analyzing the arguments of the API calls. Attacking a
classifier with argument inputs is discussed in Section 5.2.

Implementing a Generic Framework The requirements for the generic
framework are: 1) there is no access to the malware source code (access only
to the malware binary executable), and 2) the same code should work for every
adversarial sample: no adversarial example-specific code should be written. The
reasons for these requirements are two-fold. First, adding the code as a wrapper,
without changing the malware’s business logic makes the framework more ro-
bust to modification of the malware classifier model, preventing another session
of malware code modification and testing. Second, with the Malware-as-a-Service
trend, not everyone who uses a malware has its code. Some ransomwares are au-
tomatically generated using minimal configuration (e.g., only the CNC server is
modified by the user), without source code access. Thus, the GADGET frame-
work expands the number of users that can produce an evasive malware from
malware developers to every person that purchases a malware binary, making
the threat much greater.

In order to meet those requirements, we wrap the malware binary from the
outside with proxy code between the malware code and the OS DLLs implement-
ing the API calls (e.g., kernel32.dll), fulfilling requirement #1. The wrapper code
gets the adversarial sequence for the malware binary, generated by Algorithm
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2, as a configuration file. The logic of this wrapper code is to hook all APIs
that will be monitored by the malware classifier. These API calls are known to
the attacker, as mentioned in Section 3.2. These hooks call the original APIs
(to preserve the original malware functionality), keep track of the API sequence
executed so far, and call the adversarial example’s additional APIs in the proper
position based on the configuration file (so they will be monitored by the malware
classifier), instead of hard-coding the adversarial sequence to the code (fulfilling
requirement #2). This flow is presented in Figure 3(b).

We generated a new malware binary that contains the wrapper’s hooks by
patching the malware binary’s IAT using IAT Patcher, redirecting the IAT’s
API calls’ addresses to the matching C++ wrapper API hook implementation.
That way, if another hook (e.g., Cuckoo Sandbox) monitors the API calls, the
adversarial APIs are already being called and monitored like any regular API
call. To affect dynamic libraries, LdrGetProcedureAddress()\GetProcAddress()
hook has additional functionality: it doesn’t return a pointer to the requested
procedure, but instead returns a pointer to a wrapper function that implements
the previously described regular static hook functionality around the requested
procedure (e.g., returning a pointer to a wrapper around WriteFile() if “Write-
File” is the argument to GetProcAddress()). When the malware code calls the
pointer, the hook functionality will be called, transparent to the user.

The code is POC and does not cover all corner cases, e.g., wrapping a packed
malware, which requires special handling for the IAT patching to work, or pack-
ing the wrapper code to evade statically signing it as malicious (its functionality
is implemented inline, without external API calls, so dynamic analysis of it is
challenging). We avoided running Algorithm 2 inside the wrapper, and used
the configuration file to store the modified APIs instead, thus preventing much
greater overhead for the (wrapped) malware code.

5.1 Adversarial Example Functionality Validation

In order to automatically verify that we do not harm the functionality of the
malware we modify, we monitored each sample in Cuckoo Monitor before and
after the modification. We define the modified sample as functionality preserving
if the API call sequence after the modification is the same as before the modi-
fication when comparing API type, return value and order of API calls, except
for the added API calls, which return value should always be a success value.
We found that all of the 18,000 modified samples are functionality preserving.

One of the families that did not exist in the training set was the WannaCry
ransomware. This makes it an excellent candidate to manually analyze GAD-
GET’s output. First, we ran the sample via Cuckoo Sandbox and recorded its
API calls. The LSTM malware classifier mentioned in Section 4.2 successfully
detected it as malicious, although it was not part of the training set. Then we
used GADGET to generate a new WannaCry variant, providing this variant the
configuration file containing the adversarial sequence generated by Algorithm
2. We ran the modified WannaCry binary, wrapped with our framework and
the configuration file, in Cuckoo Sandbox again, and fed the recorded API call

http://hasherezade.github.io/IAT_patcher/
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sequence to the same LSTM malware classifier. This time, the malware classi-
fier classification was benign, although the malicious functionality remains: files
were still being encrypted by the new binary, as can be seen in the Cuckoo Sand-
box snapshot and API call sequence. This means that the proposed attack was
successful, end-to-end, without damaging WannaCry’s functionality.

5.2 Handling API Arguments

We now modify our attack to evade classifiers that analyze arguments as well. In
order to represent the API call arguments, we used MIST [20], as was done by
other malware classifiers, e.g., MALHEUR [14]. MIST (Malware Instruction Set)
is a representation for monitored behavior of malicious software, optimized for
analysis of behavior using machine learning. Each API call translates to an in-
struction. Each instruction has levels of information. The first level corresponds
to the category and name of a monitored API call. The following levels of the
instruction contain different blocks of arguments. The main idea underlying this
arrangement is to move “noisy” elements, such as the loading address of a DLL,
to the end of an instruction, while discriminative patterns, such as the loaded
DLL file path, are kept at the beginning of the instruction. We used MIST level
2. We converted our Cuckoo Sandbox reports to MIST using Cuckoo2Mist. We
extracted a total of 220 million lines of MIST instructions from our dataset.
Of those, only several hundred of lines were unique, i.e., different permutations
of argument values extracted in MIST level 2. This means that most API calls
differ only in arguments that are not relevant to the classification or use the
same arguments. To handle MIST arguments, we modified our attack in the
following way: Instead of one-hot encoding every API call type, we one-hot en-
coded every unique [API call type, MIST level 2 arguments] combination. Thus,
LoadLibrary(“kernel32.dll”) and LoadLibrary(“user32.dll”) are now regarded as
separate APIs by the classifier. Our framework remains the same, where Algo-
rithm 2 selects the most impactful combination instead of API type. However,
instead of adding combinations that might harm the code’s functionality (e.g.,
ExitWindowsEx ()), we simply add a different API call type (the one with the
minimal Jacobian value) in Algorithm 2, which would not cause this issue. We
now assume a more informed attacker, who knows not just the exact encoding
of each API type, but also the exact encoding of every argument combination.
This is a reasonable assumption since arguments used by benign programs, like
Windows DLLs file paths, are known to attackers [8].

Handling other API arguments (and not MIST level 2) would be similar, but
require more preprocessing (word embedding, etc.) with a negligible effect on the
classifier accuracy. Thus, focusing only on the most important arguments (MIST
level 2) that can be used by the classifier to distinguish between malware and
benign software, as done in other papers ([9]), proves that analyzing arguments
is not an obstacle for the proposed attack.

https://github.com/M-Gregoire/Cuckoo2Mist
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5.3 Handling Hybrid Classifiers and Multiple Feature Types

Since our attack modifies only a specific feature type (API calls), combining
several types of features might make the classifier more resistant to adversarial
examples against a specific feature type. Some real-world next generation anti-
malware products (such as SentinelOne) are hybrid classifiers, combining both
static and dynamic features for a better detection rate.

Our attack can be extended to handle hybrid classifiers using two phases: 1)
the creation of a combined surrogate model, including all features, using Algo-
rithm 1, and 2) attacking each feature type in turn with a specialized attack,
using the surrogate model. If the attack against a feature type fails, we continue
and attack the next feature type until a benign classification by the target model
is achieved or until all feature types have been (unsuccessfully) attacked.

We decided to use printable strings inside a PE file as our static features,
as they are commonly used as the static features of state of the art hybrid
malware classifiers [9], although any other modifiable feature type can be used.
Strings can be used, e.g., to statically identify loaded DLLs and called functions,
recognize modified file paths and registry keys, etc. Our architecture for the
hybrid classifier, shown in Figure 2(b), is: 1) A dynamic branch that contains
an input vector of 140 API calls, each one-hot encoded, inserted into a LSTM
layer of 128 units, and sigmoid activation function, with a dropout rate of 0.2
for both inputs and recurrent states. 2) A static branch that contains an input
vector of 20,000 Boolean values: for each of the 20,000 most frequent strings in
the entire dataset, do they appear in the file or not? (analogous to a similar
procedure used in NLP, which filters the least frequent words in a language).
This vector is inserted into two fully-connected layers with 128 neurons, a ReLU
activation function, and a dropout rate of 0.2 each. The 256 outputs of both
branches are inserted into a fully-connected output layer with sigmoid activation
function. Therefore, the input of the classifier is a vector containing 140 one-hot
encoded APIs and 20,000 Boolean values, and the output is malicious or benign
classification. All other hyper parameters are the same as in Section 4.2. The
surrogate model used has a similar architecture to the attacked hybrid model
described above, but it uses a different architecture and hyper parameters: GRU
instead of LSTM in the dynamic branch and 64 hidden units instead of 128 in
both static and dynamic surrogate branches. Due to hardware limitations, we
used just a subset of the dataset: 54,000 training samples and test and validation
sets of 6,000 samples each. The dataset was representative and maintained the
same distribution as the dataset described in Section 4.1. Trained on this dataset,
a classifier using only the dynamic branch (Figure 2(a)) reaches 92.48% accuracy
on the test set, a classifier using only the static branch attains 96.19% accuracy,
and a hybrid model, using both branches (Figure 2(b)) achieves 96.94% accuracy,
meaning that using multiple feature types improves the accuracy.

We used two specialized attacks: an attack against API call sequences and
an attack against printable strings. The API sequence attack is Algorithm 2.
When performing it against the hybrid classifier, without modifying the static
features of the sample, the attack effectiveness (Equation 4) decreases to 45.95%,
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compared to 96.03% against a classifier trained only on the dynamic features,
meaning that the attack was mitigated by the use of additional features. The
strings attack is a variant of the attack described in [5], using the surrogate model
instead of the attacked model used in [5] to compute the gradients in order to
select the string to add, while the adversarial sample’s maliciousness is still tested
against the attacked model, making this method a black-box attack. In this case,
the attack effectiveness is 68.66%, compared to 77.33% against a classifier trained
only on the static features. Finally, the combined attack’s effectiveness against
the hybrid model was 82.27%. Other classifier types provide similar results which
are not presented here due to space limits.

We designed GADGET with the ability to handle a hybrid model, by adding
its configuration file’s static features’ modification entries. Each such string is ap-
pended to the original binary before being IAT patched, either to the EOF or to
a new section, where those modifications don’t affect the binary’s functionality.

To summarize, we have shown that while the usage of hybrid models decreases
the specialized attacks’ effectiveness, using our suggested hybrid attack achieves
high effectiveness. While not shown due to space limits, the attack overhead isn’t
significantly affected.

6 Conclusions and Future Work

In this paper, we demonstrated a generic black-box attack, generating adversarial
sequences against API call sequence based malware classifiers. Unlike previous
adversarial attacks, we have shown an attack with a verified effectiveness against
all relevant common classifiers: RNN variants, feed forward networks, and tra-
ditional machine learning classifiers. Therefore, this is a true black-box attack,
which requires no knowledge about the classifier besides the monitored APIs.
We also created the GADGET framework, showing that the generation of the
adversarial sequences can be done end-to-end, in a generic way, without access
to the malware source code. Finally, we showed that the attack is effective, even
when arguments are analyzed or multiple feature types are used. Our attack is
the first practical end-to-end attack dealing with all of the subtleties of the
cyber security domain, posing a concrete threat to next generation anti-malware
products, which have become more and more popular. While this paper focus
on API calls and printable strings as features, the proposed attack is valid for
every modifiable feature type, static or dynamic.

Our future work will focus on two areas: defense mechanisms against such
attacks and attack modifications to cope with such mechanisms. Due to space
limits, we plan to publish an in depth analysis of various defense mechanisms in
future work. The defense mechanisms against such attacks can be divided into
two subgroups: 1) detection of adversarial examples, and 2) making the classifier
resistant to adversarial attacks. To the best of our knowledge, there is currently
no published and evaluated method to detect or mitigate RNN adversarial se-
quences. This will be part of our future work. We would also compare between
the effectiveness of different surrogate models’ architecture.
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