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Abstract

We study a new generalization of palindromes and gapped palindromes called block
palindromes. A block palindrome is a string that becomes a palindrome when identical
substrings are replaced with a distinct character. We investigate several properties of
block palindromes and in particular, study substrings of a string which are block palin-
dromes. In so doing, we introduce the notion of a maximal block palindrome, which leads
to a compact representation of all block palindromes that occur in a string. We also pro-
pose an algorithm which enumerates all maximal block palindromes that appear in a given
string T in O(|T | + ‖MBP(T )‖) time, where ‖MBP(T )‖ is the output size, which is opti-
mal unless all the maximal block palindromes can be represented in a more compact way.
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1 Introduction

A palindrome is a string that is equal to its reverse, e.g., “Able_was_I_ere_I_saw_Elba” (we
treat upper and lower characters are the same for simple explanations). Palindromes have been
studied in combinatorics on words and stringology.

Many research focused on finding palindromic structure of a string. Manacher [12] proposed
a beautiful algorithm that enumerates all maximal palindromes of a string. Kosolobov et al. [11]
proved that, a language P k can be recognizable in O(kN) time, where P is the language of all
nonempty palindromes and N is the length of an input string. Alatabbi et al. [2] considered
maximal palindromic factorization in which all factors are maximal palindromes. They also
consider a problem of computing the fewest palindromic factorization, and proposed off-line
linear-time algorithms. Later, I et al. [9] and Fici et al. [4] independently proposed on-line
O(N logN)-time algorithms, where N is the length of an input string. Similar problems were
also considered, such as, computing palindromic length [3], computing palindromic covers [9],
computing palindromic pattern matching [8].

A gapped palindrome is a generalization of a palindrome that becomes a palindrome when
a center substring is replaced by a character, where the center substring is a substring whose
beginning and ending positions are equally far from the beginning and ending positions of
the input string, respectively. For example, “Madam,_he_is_Adam” is a gapped palindrome,
and it becomes a palindrome if the center substring “m,_he_is_” is replaced by a character.
Gapped palindromes play an important role in molecular biology since they model a hairpin data
structure of DNA and RNA sequences, see e.g. [14]. Several problems were considered such as,
enumeration of exact gapped palindromes of a string [10] and also enumeration of approximate
gapped palindromes [7, 13], finding maximal length of long armed or and constrained length
gapped palindrome [5].
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In this paper, we consider the notion of block palindromes [1], which is a new generalization
of palindromes and also gapped palindromes 1. A block palindrome is a string that becomes
a palindrome when identical substrings are replaced with a distinct character. More precisely,
a block palindrome is a “symmetric” factorization f = f−n · · · f−1f0f1 · · · fn of a string with
the center factor f0 is a string (which may be empty) and each of other factor f−i = fi is a
non-empty string for any 1 ≤ i ≤ n. We also call a factor a block. For convenience, let f = f0
when n = 0. For example, a factorization “To|kyo|_|and|_|Kyo|to” is a block palindrome,
where “|” is a mark to distinguish adjacent blocks. Palindromes and gapped palindromes are
special cases of block palindromes: For a palindrome, all blocks are characters, and for a gapped
palindrome, the center block f0 is a string and the other blocks are characters.

We investigate several properties of block palindromes. We introduce the notion of maximal
block palindromes to concisely represent all block palindromes in a string, and propose an algo-
rithm which enumerates all maximal block palindromes in a string T in O(|T |+‖MBP(T )‖) time,
where ‖MBP(T )‖ is the output size. This is optimal unless all the maximal block palindromes
can be represented in a more compact way.

2 Preliminaries

Let Σ be an integer alphabet. An element of Σ∗ is called a string. The string of length 0 is
called the empty string, and is denoted by ε. Although ε is not contained in Σ, we sometimes
call ε the empty character for convenience. For a string T = xyz, x, y and z are called a prefix,
substring, and suffix of T , respectively. In particular, a prefix (resp. suffix) x of T is called a
proper prefix (resp. suffix) iff x 6= T . A non-empty string that is a proper prefix and also a
proper suffix of T is called a border of T . Hence, a string of length N can have at most N − 1
borders of length ranging from 1 to N − 1. A string which does not have any borders is called
an unbordered string. For 1 ≤ i ≤ j ≤ |T |, a substring of T which begins at position i and ends
at position j is denoted by T [i . . . j]. For convenience, let T [i . . . j] = ε if j < i.

In this paper, we also consider half-positions k+1/2 for integers 0 ≤ k ≤ |T |. For convenience,
for a half-position i and an integer r such that 1/2 ≤ i−r ≤ i+r ≤ |T |+1/2, let T [i−r . . . i+r] =
T [⌈i − r⌉ . . . ⌊i + r⌋]. Note that T [i] for a half-position i is the empty character. The position
c = (|T | + 1)/2 is called the center position of T , T [c] is called the center character of T , and
T [c− d . . . c+ d] for an integer d is called a center substring of T .

For a string T and integers 1 ≤ i, j ≤ |T |, a longest common extension (LCE) query
LCET (i, j) asks the length of the longest common prefix of the two suffixes T [i . . . |T |] and
T [j . . . |T |] of T . When clear from the context, LCET (i, j) is abbreviated as LCE (i, j). It is
well known that if T is drawn from an integer alphabet of size polynomially bounded in |T |, then
LCE queries for T can be answered in constant time after an O(|T |)-time preprocessing, e.g.,
by constructing the suffix tree of T and a data structure for lowest common ancestor queries on
the tree [6].

For a block palindrome f = f−n · · · f−1f0f1 · · · fn, the length of f denoted by |f | is the total
length of blocks, and the size of f denoted by ‖f‖ is the number of non-empty blocks. A block
palindrome is even if its size is even (that is, the center block f0 is the empty string), and
otherwise odd (that is, the center block f0 is non-empty).

3 Properties of Block Palindromes

In this section, we investigate the properties of block palindromes. We assume that T is an
input string of length N in the rest of the paper.

1Block palindromes were firstly introduced in a problem of 2015 British Informatics Olympiad [1], but we did
not know the existence at the first version of this paper.
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Since there are O(2N ) factorization of T and block palindromes are symmetric, there are
O(2N/2) block palindromes of T . Moreover, there is a tight example that T consists of only the
same characters.

Although there are a huge number of block palindromes of a string, they are very redundant.
To look for more essential properties of block palindromes, we define the largest block palindrome
which is a representative of other block palindromes. A block palindrome f = f−n · · · fn of T
that has the largest number of blocks among all block palindromes of T is called the largest
block palindrome. Note that each block fi for 0 ≤ i ≤ n is an unbordered substring and fi for
0 < i ≤ n is the shortest border of T [k + 1 . . . N − k], where k = 0 if i = n and k = |fi+1 · · · fn|
otherwise. So, the largest block palindrome of T is unique. The largest block palindrome is a
representative of all block palindromes in the sense that all block palindromes can be represented
as block palindromes of f .

A natural and prompt question would be about how to efficiently compute the largest block
palindrome of T . The following theorem answers this question.

Theorem 1. The largest block palindrome f−n · · · fn of T can be computed in O(N) time.

Proof. We construct a data structure in O(N) time that can answer any LCE query in constant
time.

We greedily compute the blocks from outside fn to inner f1 by LCE queries. We assume that
we compute the shortest border fi of T [b . . . e]. For k = 1 to ⌊(e− b+ 1)/2⌋, we check whether
T [b . . . b + k − 1] is the border of T [b . . . e] or not by checking whether LCE (b, e − k + 1) ≥ k
or not. If T [b . . . e] does not have any border, we obtain f0 = T [b . . . e]. Otherwise, we obtain
the shortest border fi = T [b . . . b + k − 1] of T [b . . . e], and compute the more inner blocks for
T [b+k . . . e−k]. Since the number of LCE queries is O(N) and each LCE query takes constant
time, the largest block palindrome of T can be computed in O(N) time.

So far, we have considered only block palindromes that are equal to T itself. Next, we con-
sider block palindromes that appear as substrings in T . We define a maximal block palindrome
which is a representative of some block palindromes in T , and study how many maximal block
palindromes can appear in T .

For a half-position 1 ≤ c ≤ N and an integer 1 ≤ d ≤ N/2, let FT (c, d) = {f |f =
f−n · · · f0 · · · fn is the largest block palindrome, f0 = T [c− d+1 . . . c+ d− 1], f = T [c− d− k+
1 . . . c+ d+ k− 1], k = |f1 · · · fn|} be the set of largest block palindromes whose center positions
are the same and whose center blocks appear at T [c − d + 1 . . . c + d − 1]. When context is
clear, we denote FT by F . For a string T , a largest block palindrome f ∈ F (c, d) such that |f |
is the longest, namely the number of blocks are maximal among all largest block palindromes
of F (c, d), is called a maximal block palindrome.

We remark that the maximal block palindrome of F (c, d) is a representative of all the largest
block palindromes of F (c, d).

Remark 1. For a half-position 1 ≤ c ≤ N and an integer 1 ≤ d ≤ N/2, any largest block
palindrome f = f−n · · · fn ∈ F (c, d) is a sub-factorization of the maximal block palindrome
g = g−m · · · gm ∈ F (c, d), that is, n ≤ m and fi = gi for 0 ≤ i ≤ n.

Proof. We assume that the statement does not hold. Let fj be a block that fj 6= gj , and j = 0
or fi = gi for 0 ≤ i < j ≤ n. If |fj | < |gj |, fj is a border of gj and it contradicts that gj is the
largest block palindrome. We can say the same things for the case |fj | > |gj |. Therefore, such
fj and gj do not exist and this statement holds.

We are interested in how many maximal block palindromes can appear in T . It is trivially
upper bounded by O(N2) since there are O(N2) substrings which can be center substrings. If
there is no limitation on the size of maximal block palindromes, we can easily see that it is
tight. For a string T of length N in which the characters are all distinct, any substring w is
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unbordered, and there is at least one maximal block palindrome that contains w as a center
block. Thus, T can contain Θ(N2) maximal block palindromes. The following example says
that the number of maximal block palindromes having three blocks has also the same tight
upper bound.

Example 1. The number of maximal block palindromes in T = anbnabanbn that have at least
three blocks is Θ(N2), where cn for a character c denotes run of c of length n , and n = (N−2)/4.

For convenience, we denote T by T = A0B1A1B2A2B3, where A0, B1, A1, B2, A2, and B3

are strings an, bn, a, b, an, and bn, respectively. There are maximal block palindromes of size
three that, for 1 < i ≤ n, 1 < j ≤ n, T [n− j + 1 . . . N − n+ i− 1]=(A0[n− j + 1 . . . n]B1[1..i−
1])(B1[i . . . n]A1B2A2[1 . . . j])(A2[n− j + 1 . . . n]B3[1 . . . i− 1]) and they are unbordered, where
the parentheses indicate blocks.

Remark that the upper bound is reduced to O(N) if we impose a limitation on the lengths
of center blocks.

Remark 2. For any constant k ≥ 0, a string of length N can contain Θ(N) maximal block
palindromes whose center blocks are of length ≤ k because there are O(N) possible center blocks.
In particular, a string contains at most N − 1 maximal block palindromes of even size (i.e., the
center blocks must be empty) because the number of occurrences of center blocks are at most
N − 1.

The following lemma shows an interesting property of maximal block palindromes, and this
property can be used for the proof of Lemma 2.

Lemma 1. For a half-position 1 ≤ c ≤ N and two integers 1 ≤ d < d′ ≤ N/2, two largest
block palindromes f = f−n · · · fn ∈ F (c, d) and g = g−m · · · gm ∈ F (c, d′) do not share the block
boundaries, namely, the ending positions of blocks ki and k′i such that ki = c+ d− 1+ |f1 · · · fi|
and k′i = c+ d′ − 1 + |g1 · · · gj | do not equal for any 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Proof. Similar to Remark 1, if we assume that this lemma does not hold, a block of f or g
must have a border and it contradicts that f and g are the largest block palindromes.

Let ‖MBP(T )‖ denote the sum of the sizes of all maximal block palindromes in T .

Lemma 2. For any string T of length N , ‖MBP(T )‖ ≤ N(2N − 1).

Proof. From Lemma 1, any two largest block palindromes, whose center positions are same
but center blocks are different, do not share the block boundaries. This implies that, for a
half-position c, the number of blocks of maximal block palindromes whose center position is c
is up to N . Since there are 2N − 1 center positions, we have ‖MBP(T )‖ ≤ N(2N − 1).

4 Enumeration of Maximal Block Palindromes

In this section, we consider how to enumerate all the maximal block palindromes MBP(T ).
A brute-force approach based on Theorem 1 would compute the largest block for every pos-
sible substring T [b . . . b + ℓ − 1] (while suppressing output of non-maximal ones), which takes
Θ(

∑N
ℓ=1

ℓ(N − ℓ)) = Θ(N3) time.
We propose an optimal solution running in o(N3) time.

Theorem 2. All maximal block palindromes that appear in T can be enumerated in O(N +
‖MBP(T )‖) time, where ‖MBP(T )‖ is the output size.
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We actually consider a variant of the problem: We propose an algorithm to enumerate all
the maximal block palindromes of size ≥ 2, whose total output size is denoted by ‖MBP≥2(T )‖,
in optimal O(N + ‖MBP≥2(T )‖) time. That is to say, we can completely ignore maximal block
palindromes of size 1, which might not be interesting if we focus on palindromic structures in
T . If we want to enumerate MBP(T ), we can do that by slightly modifying the algorithm.

Our algorithm proceeds in two steps: (i) enumerate all the pairing unbordered blocks for
all center positions in a batch processing, and (ii) build maximal block palindromes from the
enumerated blocks.

In Step (i), we firstly enumerate every pair of occurrences of an unbordered substring in T .
Note that the pair will be a component of a maximal block palindrome, and the total number
of enumerated pairs is O(‖MBP≥2(T )‖). We preprocess T in O(N) time and space to support
LCE queries in constant time. We also compute, for every character in T , the list storing all
the occurrences of the character in increasing order, all of which can be obtained by sorting the
positions i of T with the key T [i] by radix sort in O(N) time and space.

Now we focus on an occurrence b of T [b], and identify every pair of occurrences of an
unbordered substring such that the left one starts at b. Let b < b1 < b2 < · · · < bk be the
occurrences of T [b] in T [b . . . N ]. We process bi ∈ {b1, . . . , bk} in increasing order to identify
common unbordered substrings starting at b and bi using LCE queries. At the first round
for b1, we see that for any ℓ with 1 ≤ ℓ ≤ min(LCE (b, b1), b1 − b), the common substring of
length ℓ starting at b and b1 is unbordered, and thus, we report each pair of such unbordered
substrings. While processing bi ∈ {b1, . . . , bk} in increasing order, we maintain a set L of
positive integers ℓ (by a sorted list of intervals) such that T [b . . . b+ ℓ− 1] has a border caused
by the common substrings starting at b and bi’s processed so far. We use L to efficiently skip
ℓ’s such that T [b . . . b + ℓ − 1] has a border in the later rounds. For example, in the first
round, we add the interval [b1 − b + 1 . . . b1 − b + LCE(b, b1)] to L (which is initially empty)
as, for any ℓ ∈ [b1 − b+ 1 . . . b1 − b+ LCE(b, b1)], T [b . . . b+ ℓ− 1] has a border caused by the
common substring starting at b and b1. When processing bi for 1 < i ≤ k, we see that for
any ℓ ∈ [1 . . .min(LCE (b, bi), bi − b)] \ L, the common substring of length ℓ starting at b and bi
is unbordered. Updating L can be easily done in O(1) time by adding (merging if necessary)
the interval [bi − b + 1 . . . bi − b + LCE (b, bi)] to L (observe that the new interval is always
pushed back to L or merged with the last interval of L as we process {b1, . . . , bk} in increasing
order). Note that [1 . . .min(LCE (b, bi), bi − b)] \L always contains 1, and we can incrementally
enumerate its element in constant time per element because L is maintained as a sorted list of
intervals. Thus, the computation cost can be charged to the number of output, i.e., it runs in
O(N + ‖MBP≥2(T )‖) time in total.

When we find a pair of occurrences bl < br of an unbordered substring of length ℓ, we list
it up as a triple (c, br, br + ℓ), where c = (bl + br + ℓ − 1)/2 is the center of the pairing blocks.
After listing up all those triples, we sort them using the first and second elements as keys by
radix sort, which can be done in O(N + ‖MBP≥2(T )‖) time and space.

Now we are ready to proceed to Step (ii) in which we build the maximal block palindromes
from the sorted list of triples computed in Step (i). For building the maximal block palindromes
with center c, we scan the sublist of triples having center c and connect the pairing blocks
whose beginning and ending positions are adjacent using the information of the second (the
beginning position of the block) and third (the ending position of the block plus one) elements
of the triples. We build all the c-centered maximal block palindromes by extending their blocks
outwards simultaneously with a 0-initialized array A of length N . When we look at a triple
(c, br, br + ℓ), we write br to A[br + ℓ], and connect the block with the block ending at br − 1 if
such exists (which can be noticed by the information A[br] 6= 0). Since the block boundaries
are not shared due to Lemma 1, the information written in A can be propagated correctly to
extend the blocks. It runs in time linear to the size of the sublist. We can also clear A in the
same time by scanning the sublist again while writing 0 to the entries we touched.
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Since the initialization cost O(N) of A is payed once in the very beginning of Step (ii) and
the other computation cost can be charged to the output size, the total time complexity is
O(N + ‖MBP≥2(T )‖).

For enumerating MBP(T ), we modify Step (ii). While scanning the sublist for center c, we
can identify all the positions e ≥ c such that e is not an ending position of some pairing block, for
which the substring T [2c−e . . . e] is unbordered. If the unbordered substring cannot be extended
outwards by blocks (which can also be checked while scanning the sublist), it is the maximal
block palindrome of size 1 to output for MBP(T ). The algorithm runs in O(N + ‖MBP(T )‖)
time in total as the additional cost can be charged to the output size.

5 Conclusions

In this paper, we investigated several properties of block palindromes which are the general-
ization of palindromes and gapped palindromes. We also proposed an optimal-algorithm to
enumerate all maximal block palindromes appearing in a given string. As mentioned in Re-
mark 2, if we impose a limitation on the lengths of center blocks, the upper bound of the
number of maximal block palindromes is reduced to O(N), where N is the length of an input
string. In particular, for maximal block palindromes of even size, the center blocks are super
restricted to be empty. The situation is similar to considering ordinal palindromes (in which
the center blocks are strict) versus maximal gapped palindromes (in which the restriction on
the center blocks are relaxed). It would be interesting to investigate the properties of maximal
block palindromes whose center blocks have restricted lengths and develop efficient algorithms
to enumerate only such a subset of maximal block palindromes.
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