Skip to main content

Maximal Motif Discovery in a Sliding Window

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11147))

Included in the following conference series:

Abstract

Motifs are relatively short sequences that are biologically significant, and their discovery in molecular sequences is a well-researched subject. A don’t care is a special letter that matches every letter in the alphabet. Formally, a motif is a sequence of letters of the alphabet and don’t care letters. A motif \(\tilde{m}_{d,k}\) that occurs at least k times in a sequence is maximal if it cannot be extended (to the left or right) nor can it be specialised (that is, its \(d' \le d\) don’t cares cannot be replaced with letters from the alphabet) without reducing its number of occurrences. Here we present a new dynamic data structure, and the first on-line algorithm, to discover all maximal motifs in a sliding window of length \(\ell \) on a sequence x of length n in \(\mathcal {O}(nd\ell + d\lceil \frac{\ell }{w}\rceil \cdot \sum _{i = \ell }^{n-1} |{\textsc {diff}}_{i-1}^{i}|)\) time, where w is the size of the machine word and \({\textsc {diff}}_{i-1}^{i}\) is the symmetric difference of the sets of occurrences of maximal motifs at \(x[i-\ell \mathinner {.\,.}i-1]\) and at \(x[i-\ell +1 \mathinner {.\,.}i]\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carvalho, A.M., Freitas, A.T., Oliveira, A.L., Sagot, M.: An efficient algorithm for the identification of structured motifs in DNA promoter sequences. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(2), 126–140 (2006)

    Article  Google Scholar 

  2. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  3. Fuller, R.S., Funnell, B.E., Kornberg, A.: The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 38(3), 889–900 (1984)

    Article  Google Scholar 

  4. Grossi, R., Menconi, G., Pisanti, N., Trani, R., Vind, S.: Motif trie: an efficient text index for pattern discovery with don’t cares. Theor. Comput. Sci. 710, 74–87 (2018)

    Article  MathSciNet  Google Scholar 

  5. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  6. van Helden, J., Andre, B., Collado-Vides, J.: Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281(5), 827–842 (1998)

    Article  Google Scholar 

  7. Leonard, A.C., Méchali, M.: DNA replication origins. Cold Spring Harb. Perspect. Biol. 5(10), a010116 (2013)

    Article  Google Scholar 

  8. Meijer, M., et al.: Nucleotide sequence of the origin of replication of the Escherichia coli K-12 chromosome. Proc. Natl. Acad. Sci. 76(2), 580–584 (1979)

    Article  Google Scholar 

  9. Pavesi, G., Mereghetti, P., Mauri, G., Pesole, G.: Weeder web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res. 32(Web–Server–Issue), 199–203 (2004)

    Article  Google Scholar 

  10. Pisanti, N., Carvalho, A.M., Marsan, L., Sagot, M.-F.: RISOTTO: fast extraction of motifs with mismatches. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 757–768. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462_69

    Chapter  Google Scholar 

  11. Pissis, S.P.: MoTeX-II: structured MoTif eXtraction from large-scale datasets. BMC Bioinform. 15, 235 (2014)

    Article  Google Scholar 

  12. Pissis, S.P., Stamatakis, A., Pavlidis, P.: MoTeX: a word-based HPC tool for motif extraction. In: Gao, J. (ed.) ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics, ACM-BCB 2013, Washington, DC, USA, 22–25 September 2013, p. 13. ACM (2013)

    Google Scholar 

  13. Senft, M.: Suffix tree for a sliding window: an overview. In: WDS, vol. 5, pp. 41–46 (2005)

    Google Scholar 

  14. Sinha, S., Tompa, M.: YMF: a program for discovery of novel transcription factor binding sites by statistical overrepresentation. Nucleic Acids Res. 31(13), 3586–3588 (2003)

    Article  Google Scholar 

  15. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MathSciNet  Google Scholar 

  16. Waterman, M.S.: General methods of sequence comparison. Bull. Math. Biol. 46(4), 473–500 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Vayani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iliopoulos, C.S., Mohamed, M., Pissis, S.P., Vayani, F. (2018). Maximal Motif Discovery in a Sliding Window. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds) String Processing and Information Retrieval. SPIRE 2018. Lecture Notes in Computer Science(), vol 11147. Springer, Cham. https://doi.org/10.1007/978-3-030-00479-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00479-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00478-1

  • Online ISBN: 978-3-030-00479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics