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Abstract. In this paper, we present a new tool for white matter lesion seg-
mentation called lesionBrain. Our method is based on a 3-stage strategy includ-
ing multimodal patch-based segmentation, patch-based regularization of proba-
bility map and patch-based error correction using an ensemble of shallow neural 
networks. Its robustness and accuracy have been evaluated on the MSSEG chal-
lenge 2016 datasets. During our validation, the performance obtained by le-
sionBrain was competitive compared to recent deep learning methods. Moreo-
ver, lesionBrain proposes automatic lesion categorization according to location. 
Finally, complementary information on gray matter atrophy is included in the 
generated report. LesionBrain follows a software as a service model in full 
open access. 

Keywords: White Matter Lesion Segmentation, Patch-based Segmentation, 
Service as a Software. 

1 Introduction 

The presence of white matter lesions (WML) is associated with different brain diseas-
es such as multiple sclerosis (MS), small vessel disease or head injury among others, 
but it also occurs in normal aging. Magnetic resonance imaging (MRI), especially 
FLAIR images, has been found to be very sensitive in the detection of these WML. 
Therefore, MRI is the reference standard to identify WML and it plays a crucial role 
in the diagnosis and the monitoring of many neurological pathologies. Despite the 
importance of quantifying WML, this task remains mainly based on manual counting 
of lesions or semi quantitative scores such as Fazekas score. Manual delineation for 
volumetric analyses is extremely time-consuming and prone to errors due to inter- and 
intra-rater variability. As a result, the automation of WML segmentation has received 
a great deal of attention during the last decade and a wide range of methods have been 
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proposed [1]. These methods are usually classified into two categories, unsupervised 
and supervised. Unsupervised methods do not require a training dataset with manual 
segmentation of the lesions. These methods estimate lesions mainly using MRI inten-
sities and some anatomical knowledge. They can be based on Bayesian models, 
Graph-cut [2] or thresholding approaches [3] among others. Supervised methods re-
quire a training dataset including manual segmentations of experts to learn from ex-
amples. Many different techniques have been proposed such as Random Forest [4], 
Patch-based methods [5, 6] and more recently deep learning methods [7-9]. Although 
automatic methods are becoming more and more accurate, manual segmentation re-
mains used especially in clinical research or clinical trials in which very accurate 
quantification is needed to use lesion load as judgement criteria. Several factors can 
explain the difficulty to apply automatic methods in clinical context.  

First, validating the accuracy of WML segmentation methods is challenging be-
cause of the difficulty to define a ground truth. Indeed, the high intra and inter-rater 
variability makes difficult to define a gold standard. Moreover, the lack of freely 
available annotated datasets leads to highly heterogeneous validation in the literature 
making methods comparison arduous. Therefore, it is difficult to appreciate the re-
spective performances of automatic methods and their potential under clinical condi-
tions. Recently, important efforts have been done to limit these aspects by sharing 
freely available datasets based on the consensus of several experts [10]. As a result, 
evaluation and comparison of methods become easier and more reliable. In this paper, 
we propose a new tool called lesionBrain which is an extension of the rotationally-
invariant nonlocal means (RI-NLM) segmentation method [5]. To evaluate its per-
formance compared to state-of-the-art methods, the validation is carried out on the 
MSSEG MICCAI Challenge 2016 dataset which is freely available providing a high 
quality ground truth based on the consensus of seven experts.   

Second, few methods are freely available making their use in clinic research diffi-
cult. When available, these methods are usually distributed as packages that need to 
be downloaded, installed and configured. Installation steps can be complicated and 
thus may require experimented persons not always available in a research laboratory 
and especially in clinical context. In addition, users have to be trained to use the soft-
ware and computational resources have to be allocated to run it. These requirements 
can make the use of these packages complex, especially the most recent and sophisti-
cated ones requiring advanced hardware configuration (e.g., advanced GPU). To 
address this issue, lesionBrain is proposed as an online open access solution following 
the model of Software as a Service (SaaS). Our method works remotely through a 
web-interface and does not require any installation, resources or human interaction.  

In addition, automatic methods generally provide the volume of WML as the sole 
output. However, complementary information can be relevant from a clinical point of 
view. Indeed, the location of lesions is useful to establish a diagnosis of multiple 
sclerosis after a first clinical episode according to the McDonald diagnosis criteria for 
MS[11]. To provide this information, lesionBrain proposes a lesion classification 
based on their proximity to lateral ventricles, cerebral cortex or cerebellum and brain 
stem. As a result, the lesion load in volume and also the number of lesions are provid-
ed for periventricular, juxtacortical, infratentorial and deep white matter areas. 
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Finally, most of the existing tools provide information focused on WML. Howev-
er, complementary information from other structures might be needed to better study 
brain pathologies globally. For instance, gray matter (GM) atrophy can provide rele-
vant information to investigate the neurodegenerative impact of MS or Alzheimer’s 
Disease (AD). Therefore, lesionBrain not only provides volumetric measurement on 
WML but also a quantification of WM, GM and Cerebrospinal fluid (CSF). When age 
and gender of the subject are available, the volumes of these brain tissues are com-
pared to reference values derived from lifespan models to detect abnormalities [12]. 

2 Material and Methods 

2.1 Datasets 

LesionBrain dataset: Our training dataset is composed of 43 patients who un-
derwent 3T 3D-T1w MPRAGE and 3D-Fluid-Attenuated Inversion Recovery 
(FLAIR) MRI. The preprocessing steps described in the next subsection have been 
applied to all the images to align them into the MNI space and to normalize their 
intensities. Afterwards, a first expert performed manual segmentations in the MNI 
space for all the patients with ITKsnap [13] using T1w and FLAIR images. Then, a 
second expert validated and/or corrected all the manual segmentations. At the end, all 
the images were flipped as done in [14] to double the size of our training library (i.e., 
86 training images). 

MSSEG MICCAI Challenge 2016 dataset: To evaluate our tools, we used the 
dataset of the MSSEG MICCAI Challenge 2016 [10]. For this dataset, 15 patients 
underwent 3D-T1w MPRAGE, 3D-FLAIR, Gadolinium- enhanced T1w, Proton Den-
sity (PD), and T2w MRI. Only T1w and FLAIR MRI were used during our experi-
ments. These 15 subjects consist in 3 groups of five subjects scanned with Philips 
Ingenia 3T, Siemens Aera 1.5T and Siemens Verio 3T. All the images have been 
manually delineated by seven experts. Finally, the experts’ consensus is used as gold 
standard.   
 
2.2 Pipeline description 

Preprocessing: First, the images are preprocessed to normalize their intensity and 
to register them into the MNI space. A denoising step based on the adaptive nonlocal 
means filter is first applied to T1w and FLAIR images [15]. Both denoised MRI are 
then coarsely corrected for inhomogeneity [16]. Afterwards, the T1w is registered into 
the MNI space using an affine transform [17]. FLAIR is then registered to T1w in the 
MNI space. A fine inhomogeneity correction is performed on both images [18]. Final-
ly, brain tissue maps (i.e., WM, GM and CSF) are obtained using [19]. These tissue 
maps are used to perform intensity normalization based on a piece-wise linear scaling 
of intensity where the median intensity of each tissue is set to a fixed value [20]. 

Structure segmentation: The T1w is used to segment several anatomical struc-
tures. First, the intracranial cavity (ICC) is extracted using [21] and brainstem and 
cerebellum using [22]. Finally, lateral ventricles are segmented using [23]. 
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Candidate map: To reduce computational time, the segmentation is performed 
only on areas which potentially contain lesions as defined below. As done in [4, 6], 
the mean µ and the standard deviation σ of the GM FLAIR intensities are used to 
estimate a threshold (th = µ + ασ, with α = 0.5). All voxels above this threshold and 
within the ICC mask are considered as lesion candidates. However, FLAIR intensity 
within lesion may sometimes be below this threshold. Therefore, an atlas of lesions 
(average of all the manual lesion maps of the lesionBrain dataset in the MNI space) is 
also used to look for lesions at the most probable location. Voxels at locations with 
probability higher than 20% to contain a lesion are added to the map of candidates 
obtained by thresholding. 

Lesions segmentation: Lesions are segmented using an extension of the RI-NLM 
method proposed in [5]. On the one hand, such voxel-wise method may produce false 
positive detections especially in cortical areas while implicit regularization of mul-
tipoint/patch-wise frameworks demonstrated better performance than voxel-wise 
approaches [20]. On the other hand, using patch-wise methods for lesion segmenta-
tion does not enable to efficiently capture heterogeneity of shape, size and location of 
lesions [5]. Therefore, in lesionBrain, we propose to apply first the RI-NLM method 
on T1w and FLAIR images to obtain the probability map of lesions. Second, we 
achieve a regularization of the probability map using a patch-wise NLM denoising 
filter [24]. The weights of the NLM filter are estimated on the FLAIR and then used 
to average the probabilities. The RI-NLM takes advantage of inter-subject similarity 
while patch-wise NLM regularization (NLMr) takes advantage of intra-subject simi-
larity. Finally, a systematic error correction step is performed to obtain the final seg-
mentation. Automatic correction of systematic errors was first proposed in [25] with 
SegAdapter. In lesionBrain, we used the Patch-based Ensemble Corrector (PEC) 
proposed in [26]. Contrary to SegAdapter which is based on a voxel-wise Adaboost 
classifier, PEC involves patch-wise ensemble of multilayer perceptron classifiers. 
Recently, second-pass strategy such as cascade of Convolutional Neural Networks 
(CNN) [9] demonstrated high performance to limit false positive detection.  

Lesions classification: Once the lesions are segmented, a last step is performed to 
classify them into the following categories: periventricular, juxtacortical, deep white 
and infratentorial. Such classification might be clinically relevant since some diag-
nose criteria of MS are based on it [11]. Therefore, all the lesions located within 3 
voxels (i.e., 3 mm in the MNI space) from the lateral ventricles, the GM map, and the 
union of brainstem and cerebellum are classified respectively as periventricular, jux-
tacortical and infratentorial. The remaining lesions located in WM map are classified 
as deep white.  

Report generation: At the end, a pdf report is automatically generated providing 
the lesion load, the number of lesions for each class and screenshots of the processed 
images. Moreover, in case the gender and the age of the patient are provided, the 
estimated volumes of WM, GM and CSF are compared to expected normal values 
based on lifespan models [12]. The proposed lesionBrain tool has been integrated into 
the volBrain1 platform in full open access [20].  

                                                        
1 http://volbrain.upv.es   
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2.3 Validation framework 

First, the method parameters were validated using training lesionBrain dataset through 
a K-fold cross validation. For RI-NLM segmentation and NLMr of the probability 
map, the patch size was set to 3x3x3 voxels as proposed in the original papers [5, 24]. 
The search area was set to 9x9x9 voxels for RI-NLM and NLMr although 
11x11x11voxels is suggested in [5, 24].  This enables to reduce computational time 
with marginal accuracy loss. The number of used training images was set to the max-
imum (i.e., 86 when testing on the MSSEG Challenge 2016 dataset). For PEC we 
used the default parameters [26]. Therefore, the number of networks was set to 10 and 
the two patch scales to 3x3x3 voxels and 7x7x7 voxels. During the validation, we first 
evaluate the improvement in terms of mean DICE coefficient provided by each com-
ponent of the proposed segmentation pipeline – RI-NLM, RI-NLM+NLMr and RI-
NLM+NLMr+PEC (i.e., lesionBrain). Then, lesionBrain is compared with six state-
of-the-art methods. To this end, we used the mean DICE coefficient published by 
authors who have evaluated their method on the 15 MS patients of the training 
MSSEG Challenge 2016 dataset as we did here. First, lesionBrain is compared with 
two unsupervised methods based on graph-cut [2] and thresholding as implemented in 
LST-LPA [3]. In addition, the proposed method is compared with four supervised 
methods including Random Forest [4] and recent advanced DL methods such as U-
Net [7], Nabla-Net [8] and Dense-Net [7]. Finally, the inter-expert variability estimat-
ed in [4] between the seven experts is provided for reference purposes. 

3 Results 

First, Table 1 presents the mean DICE coefficient obtained with RI-NLM, RI-
NLM+NLMr and lesionBrain of the MSSEG Challenge 2016 dataset. These results 
show that each component of the pipeline improved the segmentation accuracy. The 
mean DICE increased from 66.59% to 69.27% with the NLMr of the probability map 
and from 69.27% to 72.49% with PEC. Both improvements were found to be signifi-
cant when tested with a paired t-test. This demonstrates the advantage of combining 
methods based on inter-subject similarity, intra-subject self-similarity and correction 
of systematic errors. Table 1 also shows the comparison of lesionBrain with six state-
of-the-art methods. First, lesionBrain obtained the best mean DICE coefficient with 
72.49 followed by the Dense-Net proposed in [24] which obtained 70.30. It has to be 
noted that lesionBrain only requires 2 contrasts while Dense-Net uses 5 contrasts. 
Increasing the number of sequences has a negative impact on the acquisition time, the 
patient’s comfort and the related costs. In addition, the Dense-Net has been trained 
using cross-validation which can introduce overfitting and thus overestimates the 
performance of the method. The Nabla-Net proposed in [8] requires only one contrast 
and has been trained on external dataset. This method obtained a DICE of 67% which 
is similar to the accuracy obtained by RI-NLM with 2 contrasts, but less than the 
accuracy obtained with RI-NLM+NLMr or lesionBrain.  
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Table 1. Methods comparison on the 15 MS patients of the MSSEG challenge 2016 dataset in 
term of mean DICE coefficient. 

Methods Mean DICE in % Training Modalities 

Inter-expert variability [4] 63.02   

lesionBrain 72.49 External T1w and FLAIR 

Dense-Net [7] 70.30 Cross-validation 
T1, T1Gd, T2, PD 

and FLAIR 

RI- NLM [5] + NLMr 69.27 External T1w and FLAIR 

Nabla-Net [8] 67.00 External FLAIR 

RI- NLM [5] 66.59 External T1w and FLAIR 

Random Forest [4] 63.80 Cross-validation T1w and FLAIR 

LST-LPA [3] 61.00 Unsupervised FLAIR 

Graph-cut [2] 57.09 Unsupervised T1, T2 and FLAIR 

U-Net [7] 56.42 Cross-validation 
T1, T1Gd, T2, PD 

and FLAIR 

 
Compared to Random Forest [4] which obtained 63.80% of accuracy, RI-NLM, RI-
NLM+NLMr and lesionBrain obtained higher accuracy while they require the same 
contrasts. All these methods obtained accuracy higher than inter-expert variability 
estimated at 63.02% contrary to the 3 remaining ones. The two unsupervised methods 
based on graph-cut [3] and LST-LPA [3] obtained a mean DICE of 57.09% and 61% 
respectively. Finally, the U-Net method proposed in [7] obtained the worst accuracy 
with 56.42%. These results indicate that supervised methods are ranked among the 
best, better than inter-expert variability, while unsupervised methods failed to reach 
inter-expert variability. However, the use of CNN does not necessarily ensure a good 
accuracy since the worst method is based on a U-Net using 5 contrasts. Finally, Fig-
ure 1 shows examples of WML segmentation obtained by lesionBrain for three pa-
tients of the MSSEG Challenge 2016 dataset (for best, median and worst DICE).  

4 Conclusion 

In this paper, we present a new tool for WML segmentation using T1w and FLAIR 
MRI. Our method combined several complementary patch-based approaches to accu-
rately segment WML. We evaluated its accuracy on the MSSEG challenge 2016 da-
tasets with a strong ground truth based on the consensus of seven experts. During our 
validation, the performance obtained by lesionBrain were competitive compared to 
Dense-Net  [7], Nabla-Net [8] and U-Net [7]. Moreover, lesionBrain obtained a higher 
accuracy than the inter-expert variability. Finally, our tool is already integrated into a 
web-platform in open access. 
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Best DICE=89.35% Median DICE=74.14%  Worst DICE=46.47% 

 
Fig. 1. Examples of WML segmentation produced by lesionBrain for best, median and worst 
DICE obtained on the MSSEG Challenge 2016 dataset. True positives are in green, False Nega-
tives in red and False Positives in blue. 
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