Skip to main content

The Importance of Information Flow Regulation in Preferentially Foraging Robot Swarms

  • Conference paper
  • First Online:
Swarm Intelligence (ANTS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11172))

Included in the following conference series:

Abstract

Instead of committing to the first source of reward that it discovers, an agent engaged in “preferential foraging” continues to choose between different reward sources in order to maximise its foraging efficiency. In this paper, the effect of preferential source selection on the performance of robot swarms with different recruitment strategies is studied. The swarms are tasked with foraging from multiple sources in dynamic environments where worksite locations change periodically and thus need to be re-discovered. Analysis indicates that preferential foraging leads to a more even exploitation of resources and a more efficient exploration of the environment provided that information flow among robots, that results from recruitment, is regulated. On the other hand, preferential selection acts as a strong positive feedback mechanism for favouring the most popular reward source when robots exchange information rapidly in a small designated area, preventing the swarm from foraging efficiently and from responding to changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonani, M., et al.: The MarXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pp. 4187–4193. IEEE, Piscataway (2010)

    Google Scholar 

  2. De Marco, R., Farina, W.M.: Trophallaxis in forager honeybees Apis mellifera: Resource uncertainty enhances begging contacts? J. Comp. Physiol. A 189, 125–134 (2003). https://doi.org/10.1007/s00359-002-0382-y

    Article  Google Scholar 

  3. Ducatelle, F., et al.: Cooperative navigation in robotic swarms. Swarm Intell. 8(1), 1–33 (2014)

    Article  Google Scholar 

  4. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella, L.M.: Self-organized cooperation between robotic swarms. Swarm Intell. 5(2), 73–96 (2011)

    Article  Google Scholar 

  5. Gill, F.B., Wolf, L.L.: Nonrandom foraging by sunbirds in a patchy environment. Ecology 58(6), 1284–1296 (1997)

    Article  Google Scholar 

  6. Granovskiy, B., Latty, T., Duncan, M., Sumpter, D.J.T., Beekman, M.: How dancing honey bees keep track of changes: The role of inspector bees. Behav. Ecol. 23(3), 588–596 (2012). https://doi.org/10.1093/beheco/ars002

    Article  Google Scholar 

  7. Gregson, A.M., Hart, A.G., Holcombe, M., Ratnieks, F.L.: Partial nectar loads as a cause of multiple nectar transfer in the honey bee (Apis mellifera): a simulation model. J. Theor. Biol. 222(1), 1–8 (2003). https://doi.org/10.1016/S0022-5193(02)00487-3

    Article  Google Scholar 

  8. Gutiérrez, Á., Campo, A., Monasterio-Huelin, F., Magdalena, L., Dorigo, M.: Collective decision-making based on social odometry. Neural Comput. Appl. 19(6), 807–823 (2010)

    Article  Google Scholar 

  9. Hecker, J.P., Moses, M.E.: Beyond pheromones: evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intell. 9, 43–70 (2015)

    Google Scholar 

  10. Hoff, N., Sagoff, A., Wood, R.J., Nagpal, R.: Two foraging algorithms for robot swarms using only local communication. In: Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics (ROBIO 2010), pp. 123–130. IEEE, Piscataway (2010)

    Google Scholar 

  11. Hrolenok, B., Luke, S., Sullivan, K., Vo, C.: Collaborative foraging using beacons. In: van der Hoek, W., Kaminka, G.A., Lesperance, Y., Luck, M., Sen, S. (eds.) Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 1197–1204. IFAAMAS, Richland (2010)

    Google Scholar 

  12. Jones, C., Mataric, M.J.: Adaptive division of labor in large-scale minimalist multi-robot systems. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 2, pp. 1969–1974. IEEE, Piscataway (2003)

    Google Scholar 

  13. Krause, J., Godin, J.G.J.: Influence of prey foraging posture on flight behavior and predation risk: predators take advantage of unwary prey. Behav. Ecol. 7(3), 264–271 (1996)

    Article  Google Scholar 

  14. Krieger, M.J.B., Billeter, J.B.: The call of duty: self-organised task allocation in a population of up to twelve mobile robots. Rob. Auton. Syst. 30(1–2), 65–84 (2000)

    Article  Google Scholar 

  15. Lachlan, R., Crooks, L., Laland, K.: Who follows whom? Shoaling preferences and social learning of foraging information in guppies. Anim. Behav. 56(1), 181–190 (1998). https://doi.org/10.1006/anbe.1998.0760

    Article  Google Scholar 

  16. Lerman, K., Jones, C., Galstyan, A., Mataric, M.J.: Analysis of dynamic task allocation in multi-robot systems. Int. J. Rob. Res. 25, 225–242 (2006)

    Article  Google Scholar 

  17. Michelena, P., Jeanson, R., Deneubourg, J.L., Sibbald, A.M.: Personality and collective decision-making in foraging herbivores. Philos. Trans. R. Soc. Lond. B Biol. Sci. 277(1684), 1093–1099 (2010). https://doi.org/10.1098/rspb.2009.1926

    Article  Google Scholar 

  18. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  19. Pinter-Wollman, N., et al.: Harvester ants use interactions to regulate forager activation and availability. Anim. Behav. 86(1), 197–207 (2013)

    Article  Google Scholar 

  20. Pitonakova, L., Crowder, R., Bullock, S.: Information flow principles for plasticity in foraging robot swarms. Swarm Intell. 10(1), 33–63 (2016)

    Article  Google Scholar 

  21. Pitonakova, L., Crowder, R., Bullock, S.: Behaviour-data relations modelling language for multi-robot control algorithms. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017), pp. 727–732. IEEE, Piscataway (2017)

    Google Scholar 

  22. Pitonakova, L., Crowder, R., Bullock, S.: The Information-Cost-Reward framework for understanding robot swarm foraging. Swarm Intell. 12(1), 71–96 (2018). https://doi.org/10.1007/s11721-017-0148-3

    Article  Google Scholar 

  23. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro link for collective decisions: the shortest path discovery/selection example. Swarm Intell. 9(2), 75–102 (2015)

    Article  Google Scholar 

  24. Sarker, M.O.F., Dahl, T.S.: Bio-Inspired communication for self-regulated multi-robot systems. In: Yasuda, T. (ed.) Multi-Robot Systems, Trends and Development, pp. 367–392. InTech (2011)

    Google Scholar 

  25. Schmickl, T., Crailsheim, K.: Throphallaxis within a robotic swarm: bio-inspired communication among robots in a swarm. Auton. Robots 25(1), 171–188 (2008)

    Article  Google Scholar 

  26. Seeley, T.D.: Honey bee foragers as sensory units of their colonies. Behav. Ecol. Sociobiol. 34(1), 51–62 (1994). https://doi.org/10.1007/BF00175458

    Article  Google Scholar 

  27. Seeley, T.D., Camazine, S., Sneyd, J.: Collective decision-making in honey bees: how colonles choose among nectar sources. Behav. Ecol. Sociobiol. 28, 277–290 (1991)

    Article  Google Scholar 

  28. Sumpter, D.J.T., Beekman, M.: From nonlinearity to optimality: pheromone trail foraging by ants. Anim. Behav. 66(2), 273–280 (2003). https://doi.org/10.1006/anbe.2003.2224

    Article  Google Scholar 

  29. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making: the weighted voter model. In: Proceedings of 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2014), pp. 45–52. ACM, New York (2014)

    Google Scholar 

  30. Wawerla, J., Vaughan, R.T.: A fast and frugal method for team-task allocation in a multi-robot transportation system. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pp. 1432–1437. IEEE, Piscataway (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by EPSRC grants EP/G03690X/1, EP/N509747/1 and EP/R0047571.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Pitonakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pitonakova, L., Crowder, R., Bullock, S. (2018). The Importance of Information Flow Regulation in Preferentially Foraging Robot Swarms. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Trianni, V. (eds) Swarm Intelligence. ANTS 2018. Lecture Notes in Computer Science(), vol 11172. Springer, Cham. https://doi.org/10.1007/978-3-030-00533-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00533-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00532-0

  • Online ISBN: 978-3-030-00533-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics