Skip to main content

A Visual Attention Model Based on Human Visual Cognition

  • Conference paper
  • First Online:
Advances in Brain Inspired Cognitive Systems (BICS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10989))

Included in the following conference series:

Abstract

Understanding where humans look in a scene is significant for many applications. Researches on neuroscience and cognitive psychology show that human brain always pays attention on special areas when they observe an image. In this paper, we recorded and analyzed human eye-tracking data, we found that these areas mainly were focus on semantic objects. Inspired by neuroscience, deep learning concept is proposed. Fully Convolutional Neural Networks (FCN) as one of methods of deep learning can solve image objects segmentation at semantic level efficiently. So we bring forth a new visual attention model which uses FCN to stimulate the cognitive processing of human free observing a natural scene and fuses attractive low-level features to predict fixation locations. Experimental results demonstrated our model has apparently advantages in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  2. Smola, A.J., Mika, S., Scholkhopf, B., et al.: Regularized principal manifold. J. Mach. Learn. Res. 1(3), 179–209 (2001)

    MathSciNet  Google Scholar 

  3. Kanwisher, N., Mcdermott, J., Chun, M.: The fusiform face area: a module in human extrastriate cortex specialized for perception of faces. J. Neurosci. 17(11), 4302–4311 (1997)

    Article  Google Scholar 

  4. Epstein, R., Kanwisher, N.: A cortical representation of the local visual environment. Nature 392(6676), 598–601 (1998)

    Article  Google Scholar 

  5. Epstein, R., Stanley, D., Harris, A., Kanwisher, N.: The parahippocampal place area: perception, encoding, or memory retrieval? Neuron 23(2000), 115–125 (2000)

    Google Scholar 

  6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, vol. 79, pp. 3431–3440 (2015)

    Google Scholar 

  7. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. IEEE 20, 1254–1259 (2002)

    Article  Google Scholar 

  8. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)

    Google Scholar 

  9. Garcia-Diaz, A., Fdez-Vidal, X.R., Pardo, X.M., Dosil, R.: Decorrelation and distinctiveness provide with human-like saliency. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 343–354. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04697-1_32

    Chapter  Google Scholar 

  10. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8(7), 1–20 (2008)

    Article  Google Scholar 

  11. Torralba, A.: Modeling global scene factors in attention. J. Opt. Soc. Am. A 20(7), 1407–1418 (2003)

    Article  Google Scholar 

  12. Schölkopf, B., Platt, J., Hofmann, T.: Graph-Based Visual Saliency, vol. 19, pp. 545–552. MIT Press, Cambridge (2010)

    Google Scholar 

  13. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look, vol. 30, pp. 2106–2113 (2009)

    Google Scholar 

  14. Zhao, Q., Koch, C.: Learning a saliency map using fixated locations in natural scenes. J. Vis. 11(3), 74–76 (2011)

    Article  Google Scholar 

  15. Yan, Y., Ren, J., Zhao, H., Sun, G., Wang, Z., Zheng, J., et al.: Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos. Cognit. Comput. 9, 1–11 (2017)

    Article  Google Scholar 

  16. Zhou, Y., Zeng, F.Z., Zhao, H.M., Murray, P., Ren, J.: Hierarchical visual perception and two-dimensional compressive sensing for effective content-based color image retrieval. Cognit. Comput. 8(5), 877–889 (2016)

    Article  Google Scholar 

  17. Chai, Y., Ren, J., Zhao, H., Li, Y., Ren, J., Murray, P.: Hierarchical and multi-featured fusion for effective gait recognition under variable scenarios. Pattern Anal. Appl. 19(4), 905–917 (2016)

    Article  MathSciNet  Google Scholar 

  18. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  19. Yu, S., Cheng, Y., Xie, L., et al.: Fully convolutional networks for action recognition. IET Comput. Vision 11(8), 744–749 (2017)

    Article  Google Scholar 

  20. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  21. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)

    Google Scholar 

  22. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40(12), 1489–1506 (2000)

    Article  Google Scholar 

  23. Bruce, N.D.B., Tsotsos, J.K.: Saliency based on information maximization. Adv. Neural. Inf. Process. Syst. 18(3), 298–308 (2005)

    Google Scholar 

  24. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. Off. J. Int. Neural Netw. Soc. 19(9), 1395–1407 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the associate editor and all of the reviewers for their constructive comments to improve the manuscript. The work is supported by NSF of China (Nos. NCYM0001 and 61201319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, N., Zhao, X., Ma, B., Zou, X. (2018). A Visual Attention Model Based on Human Visual Cognition. In: Ren, J., et al. Advances in Brain Inspired Cognitive Systems. BICS 2018. Lecture Notes in Computer Science(), vol 10989. Springer, Cham. https://doi.org/10.1007/978-3-030-00563-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00563-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00562-7

  • Online ISBN: 978-3-030-00563-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics